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Abstract Because of the slow speed of tracking and registration on scenarios of augmented
reality an algorithm was proposed based on the improved random fern on tracking and registration
of augmented reality. The proposed algorithm has the offline training section and the online
tracking section. A classifier based on the embedded fern was proposed. In the developed
classifier a supervised dimensionality reduction method and all possible information were used.
What’ s more it was also used for the feature matching and then camera pose was computed and
virtual objects were rendered and registered. Experimental results show that the proposed algorithm
is superior to other algorithms on the average classification accuracy. The average processing time
of each frame is about 34. 22 ms which can almost meet the real-time.
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34.22 ms
1 10 161. 42 ms
Table 1 Mean classification accuracies for 10-fold 4.7 . 3D
cross validation in different methods %
Rome Dubrovnik
87. 85 92. 14 4
88.76 96. 21
94.28 95. 87 1
97.33 98. 76
2
3.2 34.22 ms
room 786 3
building 1372
320 x 240 30 /s.
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