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Abstract With Ce-Ni/Co as reforming catalyst and CaO from calcination of calcium acetate as
CO, adsorbent the sorption-enhanced steam reforming of bio-oil for hydrogen production was
studied. The results show that the addition of CO, sorbent can effectively promote the hydrogen
molar fraction and hydrogen yield compared with the case without CO, sorbent under the same
temperature and M S /M C ratio the molar mass of steam to carbon in the model compounds
of bio-oil . When the CO, sorbent existed the hydrogen molar fraction and yield increased first
then decreased with the increase of the reforming temperature and reached the maximum at
700 C. With the increase of M S /M C ratio the hydrogen molar fraction increased first then
decreased and was the largest at the M S /M C ratio of 9 while the hydrogen yield increased
till the M S /M C ratio reached 9 then changed slightly. With the increase of M CaO /
M C ratio the molar mass of calcium oxide to carbon in the model compounds of bio-oil  the
hydrogen molar fraction increased gradually but changed slightly after the M CaO /M C ratio
reached 3 while the hydrogen yield increased first and then decreased reached the maximum at
the M CaO /M C ratio of 3. The optimum conditions for steam reforming of bio-oil with CO,
sorption are 700 C M S /M C =9 and M CaO /M C =3 where the hydrogen molar
fraction and the hydrogen yield are 92. 2% and 84. 1% respectively.
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