2. 沈阳飞机设计研究院, 辽宁 沈阳 110035;
3. 中国人民解放军驻沈阳飞机工业(集团)有限公司 军事代表室, 辽宁 沈阳 110034
2. Shenyang Aircraft Design & Research Institute, Shenyang 110035, China;
3. PLA Military Representative Office in Shenyang Aircraft Industries (Group)Co., Ltd., Shenyang 110034, China.
Corresponding author: WEN Chen, E-mail: wenchen@buaa.edu.cn
超高强度不锈钢因其优良的比强度和疲劳性能,成为一种工程用主要结构材料,主要应用于制造重要承力结构件、连接件、紧固件和传动系统零件.超高强度不锈钢在服役过程中,往往因为腐蚀问题造成严重的危害,因此,很多学者研究了服役环境下的腐蚀及相关问题[1, 2, 3, 4].为了研究超高强度不锈钢腐蚀行为及机理,含氯条件下的电化学测试广泛应用于研究模拟环境下超高强度不锈钢的腐蚀行为.20Cr9Ni5Co14为一种新型超高强度不锈钢,具有十分优异的力学性能.针对该超高强度钢的研究,主要集中在力学性能以及微观组织、元素对力学性能影响的研究[5, 6, 7, 8, 9, 10].
在前期工作中,采用模拟环境试验或电化学手段对多种超高强度钢进行了腐蚀特性的研究[2, 3, 4],研究了Cl-对钢的作用规律及腐蚀形貌,不锈钢在Cl-作用下腐蚀主要从点蚀开始发展.本文通过电化学交流阻抗技术和动电位极化技术研究pH值及Cl-浓度对20Cr9Ni5Co14超高强度不锈钢腐蚀行为的影响,采用扫描电子显微镜(SEM)对腐蚀后的形貌进行表征.
1 实验方法 1.1 实验材料实验材料为20Cr9Ni5Co14超高强度不锈钢,化学成分如表 1所示.其热处理制度包括预备热处理(1100℃,1h,空冷+680℃,6h,空冷)和最终热处理(1080℃,1h,油冷+(-73℃),2h,空气中回温+540℃,4h,空冷).此种热处理工艺下抗拉强度和屈服强度分别为1927和1580MPa.
试样采用线切割技术,切成尺寸Φ10mm的圆片,通过环氧树脂封样后,采用水砂纸打磨至1000#.电化学测试使用美国普林斯顿2273电化学工作站.试验采用带有鲁金毛细管的三电极体系,其中20Cr9Ni5Co14钢为工作电极,铂电极和饱和甘汞电极分别为辅助电极和参比电极.交流阻抗测试电位为相对于开路电位±10mV,扫描频率范围为100kHz~10MHz,试验结果通过ZSimpWin软件拟合.动电位极化扫描范围相对于开路电位(open circle potential) -0.25~0.25V.线性极化扫描范围相对于开路电位0~1.5V.所有测试均在室温下进行.采用光学相机(佳能)和扫描电子显微镜(CS3400)对形貌进行了表征.
2 结果与讨论 2.1 20Cr9Ni5Co14钢电化学动电位极化行为20Cr9Ni5Co14钢在NaCl溶液中的动电位极化曲线如图 1所示.中性条件下NaCl质量分数以及3.5% NaCl溶液中pH对20Cr9Ni5Co14钢的影响分别如图 1a,图 1b所示,从图 1采用线性拟合方法,得到自腐蚀电位Ecorr和腐蚀电流密度Jcorr结果如表 2所示.从图 1可知,20Cr9Ni5Co14钢在3.5% NaCl溶液中出现钝化,随着NaCl质量分数的升高,钝化现象消失;而自腐蚀电流密度随着NaCl质量分数增加从8.223×10-7A/cm2减小至1.129×10-7A/cm2,这说明在自然条件下NaCl浓度高腐蚀倾向小,而发生腐蚀后,高浓度会促进腐蚀.不同pH值条件下,均出现了不同程度的钝化现象,随着氢离子浓度增加,20Cr9Ni5Co14钢的致钝电位和过钝化电位增加,pH为2时自腐蚀电位相对于pH为7时高0.031V,这表明20Cr9Ni5Co14钢具有良好的耐酸性能.Jcorr随着氢离子浓度增加呈线性增加,而维钝电流密度随着氢离子浓度增加而增加,这说明氢离子浓度的增加,加速了腐蚀.酸性条件下,20Cr9Ni5Co14钢在高电位(0.9~1.4V)出现了二次钝化现象,这主要是因为20Cr9Ni5Co14钢含有高的Cr及Co,起到了钝化膜的自修复作用.
3.5% NaCl溶液条件下不同pH值20Cr9Ni5Co14钢电化学线性极化曲线如图 2所示,极化电阻拟合结果如表 3所示.从图 2及表 3可以看出,随着氢离子浓度的增加,20Cr9Ni5Co14钢极化电阻从3.050Ωcm2降低至2.763Ωcm2,这说明随着氢离子浓度的增加,20Cr9Ni5Co14钢的耐蚀性能下降.
图 3所示为中性3.5 %NaCl溶液条件下20Cr9Ni5Co14钢电化学循环极化曲线.相比于第一次极化,第二次极化自腐蚀电位降低,自腐蚀电流增加,说明在阳极极化条件下,20Cr9Ni5Co14钢发生了腐蚀,导致材料的耐蚀性能下降.
3.5%NaCl溶液中不同pH值20Cr9Ni5Co14钢电化学交流阻抗曲线如图 4所示.采用Zsimpwin对数据进行拟合,等效电路及拟合结果分别如图 5及表 4和表 5所示.图 5a为pH值为7和3时等效电路图,图 5b为pH值为2时等效电路图;其中Rl表示溶液电阻,Cr和Rr分别为双电层电容和电阻,Qt和Rt分别表示腐蚀产物的常相位角元件及电阻;Qr表示双电层电容的常相位角元件,Wt为Warburg容抗.
腐蚀产物的电阻随着pH值的降低而降低;而腐蚀产物的容抗值随着pH值的降低而不断增加.这说明在pH值降低的过程中,腐蚀产物厚度在增加,导致容抗增加,而腐蚀产物溶解速度加快,导致腐蚀产物电阻降低,这个结果与动电位极化过程中电位呈上升趋势而电流随氢离子浓度值降低而降低的结果一致.在pH值较高时,腐蚀产物主要由相位角元件构成容抗,而当pH值达到2时,出现了Warburg容抗,腐蚀产物的形成过程由电化学极化控制转化成了浓差极化控制,这说明在pH值较高时,腐蚀产物膜具有良好的耐腐蚀性能而导致反应步骤成为控制步骤,而当pH值达到2时,腐蚀产物溶解速度很快,金属界面发生腐蚀速率很大,这时浓差极化速度相对慢,反而成为了控制步骤.
2.5 20Cr9Ni5Co14钢电化学腐蚀形貌研究图 6所示为经过动电位极化后电极表面形貌.从图可 以看出,经过极化后,电极表面腐蚀轻微,说明20Cr9Ni5Co14钢耐蚀性好;从图 6b可知,不锈钢发生了点蚀,这也导致极化后材料自腐蚀电位和自腐蚀电流下降,与图 3结果一致.
NaCl质量分数从3.5%增加至10%,自腐蚀电流密度从8.223×10-7A/cm2减小至1.129×10-7A/cm2,在自然条件下浓度高腐蚀倾向小,而发生腐蚀后,高浓度会促进腐蚀.
1) 随氢离子浓度的增加,20Cr9Ni5Co14钢的致钝电位和过钝化电位增加,而且在酸性条件下出现二次钝化现象,这表明20Cr9Ni5Co14钢具有良好的耐酸性能.
2) 20Cr9Ni5Co14钢腐蚀产物电阻和线性极化电阻随着氢离子浓度增加而减小,而自腐蚀电流随着氢离子浓度增加呈线性增加,且维钝电流密度随着氢离子浓度增加而增加;20Cr9Ni5Co14钢随着氢离子浓度的增加,耐腐蚀性能下降.
3) 在pH值高于3时,20Cr9Ni5Co14钢的电化学腐蚀过程主要由电化学极化控制,而当pH值达到2时,其电化学腐蚀过程转变为浓差极化控制.
4) 20Cr9Ni5Co14钢腐蚀是从点蚀开始的.
[1] | Liu J H, Wen C, Yu Mei, et al.Effect of anions on stress corrosion cracking behaviors of ultra-high strength steel 23Co14Ni12Cr3Mo[J]. |
[2] | 于美, 董宇, 王瑞阳, 等.23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J].材料工程, 2012(1):42-50. (Yu Mei, Dong Yu, Wang Rui-yang, et al.Corrosion behavior of 23Co14Ni12Cr3Mo ultra high strength steel in simulated seawater environment[J]. |
[3] | 刘建华, 梁馨, 李松梅.硫酸盐还原菌对两种不锈钢的腐蚀作用[J].金属学报, 2005, 41:545-550. (Liu Jian-hua, Liang Xin, Li Song-mei.Corrosion action of sulfate-reducing bacteria on two stainless steels[J]. |
[4] | 梁馨, 刘建华, 李松梅.Cl-对Cr17Ni2在硫酸盐还原菌菌液中电化学行为的影响[J].材料保护, 2007, 40:16-19. (Liang Xin, Liu Jian-hua, Li Song-mei.Influence of Cl- on electrochemical behavior of Cr17Ni2 in sulfate-reducing bacteria environment[J]. |
[5] | Zhong J Y, Sun M, Liu D B, et al.Effects of chromium on the corrosion and electrochemical behaviors of ultra-high strength steels[J]. |
[6] | Kim K, Lee S, Nam N, et al.Effect of cobalt on the corrosion resistance of low alloy steel in sulfuric acid solution[J]. |
[7] | Zhang X, Fan L J, Xu Y L.Effect of aluminum on microstructure, mechanical properties and pitting corrosion resistance of ultra-pure 429 ferritic stainless steels[J]. |
[8] | Liu S, Gao S Y, Zhou Y F.A research on the microstructure evolution of austenite stainless steel by surface mechanical attrition treatment[J]. |
[9] | Zhang W P, Zhang Z X, Meng J W.Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography[J]. |
[10] | Mejia I, Altamirano G, Bedolla-Jacuinde A.Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron[J]. |