2. 辽宁省强制隔离戒毒所, 辽宁 沈阳 110098
2.Liaoning Province Compulsory Isolation Detoxification Institute, Shenyang 110098, China
随着对建筑节能要求的标准不断提高[1],泡粒混凝土应运而生.由于泡粒混凝土的性能优于泡沫混凝土和胶粉聚苯颗粒保温浆料[2],已经得到大面积的应用,因此对泡粒混凝土的基础理论研究也迫在眉睫.众多学者对泡沫混凝土[3-6]和EPS混凝土[7-8]均做了大量的系统研究,而对于泡粒混凝土的基础理论研究,目前还未见相关文献.
泡粒混凝土的力学行为表现出泡粒混凝土多孔材料的受力破坏特征,破坏过程具有很明显的应力跌宕阶段,具有一定的抗压缩韧性,变形性能较好,具有较好的吸能功能.本文通过对泡粒混凝土进行试验研究,进行低加载速率(10,20,30,40 mm/min)加载的单轴压缩试验,并系统地分析了试验得到的应力-应变曲线等结果,研究了加载速率、苯粒体积比、密度等因素对材料性能的影响,建立了泡粒混凝土在低加载速率下的单轴压缩本构模型,为该新型材料在今后的研究与应用提供参考依据.
1 试验研究本文研究内容是聚苯颗粒(以下简称苯粒)含量以及湿密度对泡粒混凝土应力-应变曲线的影响情况,试验中的苯粒体积比选取0.3,0.4,0.5,0.6,0.7 m3/m3 5个等级,湿密度选取200,250,300,350,400 kg/m3 5个等级,共计设计25组不同配合比的泡粒混凝土.
试验中所用的试件为100 mm×100 mm×100 mm的立方体试件,所有试验均在MAS-500型框架式电液伺服加载系统上进行.
1.1 试验过程在加载的初始阶段,由于应力水平较低,泡粒混凝土中包裹较大气泡的水泥壳体会首先破碎,此时,应力-应变曲线表现为线弹性.随着加载的持续增加,裂缝会从最先破碎的水泥壳体处向外扩展,并沿聚苯颗粒边缘扩展,当达到压溃应力时,贯通为明显的裂缝.当加载继续进行,进入塑性压溃平台阶段,破碎的水泥浆体逐渐增多,但由于贯通的裂缝已经形成,应力得到了释放,因此,贯通的新裂缝不再出现,水泥壳体逐渐破碎压实,形成了压溃平台阶段,在实际工程中,出于安全起见,取平台阶段的强度为泡粒混凝土的正常使用极限状态.当加载进一步增加,由于水泥壳体基本完全破裂,且由于聚苯颗粒的存在,仍会产生较小的应变,但应力迅速增加,应力-应变曲线进入了密实加强阶段.
1.2 加载速率的影响图 1为两种湿密度等级的泡粒混凝土在低加载速率下进行单轴压缩试验的应力-应变曲线.从试验得到的结果可以看出,其应力-应变曲线显现出明显的三段性:弹性阶段、塑形平台阶段和密实加强阶段.由应力-应变曲线还可以看出,泡粒混凝土的应变率效应不明显,因此,在本文的研究范围中将不考虑应变率对材料的影响.
从试验得到的应力-应变曲线(图 2)可以看出,湿密度等级为200 kg/m3的泡粒混凝土,随苯粒体积比的增加,其应力-应变曲线逐渐上升,即在相同应变的情况下,其强度随苯粒体积比的增加而增加.而在湿密度等级达到250和300 kg/m3时,表现出其应力-应变曲线在随苯粒体积比的增加而逐渐上升,当苯粒体积比达到0.5 m3/m3之后,其应力-应变曲线又逐渐下降的现象.当湿密度等级达到350和400 kg/m3时,同样表现出应力-应变曲线随苯粒体积比的增加而逐渐上升;在苯粒体积比达到0.6 m3/m3后,其应力-应变曲线才逐渐下降.可见,苯粒体积比对于泡粒混凝土的应力-应变曲线的影响较为复杂.
从试验得到的应力-应变曲线(图 3)可以看出,在相同苯粒体积比的情况下,湿密度等级越高,泡粒混凝土的应力-应变曲线越高,即相同苯粒体积比的泡粒混凝土在应变相同时,湿密度等级越高的,其强度也越高.可见,湿密度对泡粒混凝土应力-应变曲线的影响较为简单.
材料本构关系是掌握材料的力学特性和物理性能的基础,并对材料的应用有指导意义[9-10].为有效区分应力-应变曲线中的3个阶段,将弹性阶段与塑性压溃平台阶段交接处的应力及应变定义为压溃应力σcr*和压溃应变εcr* ,并采用分段函数来表述本构关系f(σ)=f(ρd,Cbp,ε).
在弹性阶段,可以认为泡粒混凝土的应力应变呈线弹性,因此,其弹性模量E可以简单表示为E=σ/ε.通过对试验数据的整理计算,可以得到各个组次的试件的弹性模量,并对这些结果进行分析,采用式(1)表示:
(1) |
通过对试验结果的弹性模量E进行分析,得到式(2):
(2) |
图 4给出了试验结果得到的弹性模量与式(2)预测值的比较,从中可以看出,式(2)可以较好反应干密度ρd及苯粒体积比Cbp对弹性模量E的影响.因此,当ε≤εcr*时,泡粒混凝土在弹性阶段的本构关系可表征为
(3) |
泡粒混凝土的压溃应力可表征为
(4) |
图 5给出了试验结果得到的压溃应力σcr* 与式(4)预测值的比较,从中可以看出,式(4)可以较好地反映干密度ρd及苯粒体积比Cbp对压溃应力σcr* 的影响.
压溃应变也是一个重要的力学指标,根据式(3)和式(4)可以得到式(5)压溃应变表达式:
(5) |
对于塑性平台阶段以及密实阶段,即当ε>εcr*时,应力-应变曲线采用式(6)表示:
(6) |
结合本文的试验结果,得到式(4)中各待定系数的具体数值,即泡粒混凝土在压溃平台阶段以及密实阶段的本构模型式(7),式(8):
(7) |
即泡粒混凝土的本构模型可以表示为
(8) |
图 6中给出了泡粒混凝土的应力-应变曲线与本文提出的单轴压缩本构模型预测结果的比较.可以看出,本文提出的本构模型较好地反映了泡粒混凝土的压缩特性,预测结果与试验结果较为吻合.
1) 泡粒混凝土的应变率效应不明显.
2) 苯粒体积比对泡粒混凝土的强度影响较为复杂,两者呈抛物线关系.
3) 密度对泡粒混凝土强度的影响较为简单,密度越大,强度越高,压溃平台应力升高范围变窄.
4) 通过对试验结果的分析,同时考虑苯粒体积比、干密度对泡粒混凝土的影响,建立了泡粒混凝土的分段本构模型,此模型可以较好地预测在低加载速率情况下的泡粒混凝土的单轴压缩力学性能.
[1] |
中华人民共和国建设部.公共建筑节能设计标准:GB 50189-2005[S].北京:中国建筑工业出版社,2005.
(Ministry of Construction of the People′s Republic of China.Design standard for energy efficiency of public buildings:GB 50189—2005[S].Beijing:China Architecture & Building Press,2005.) (0) |
[2] | LuYong-ming, HeChun-tao, XinHui-peng, et al. Preparation of foamed particle concrete and study of its performance[J]. Concrete, 2014 (6) : 147 –150. (0) |
[3] | Jones M R,McCarthy A.Behavior and assessment of foamed concrete for construction applications[M].Dhir R K,Newlands M D,McCarthy A,eds.Use of foamed concrete in construction.London:Thomas Telford,2005:61-88. (0) |
[4] | Ramamurthy K, Kunhanandan Nambiar E K, Indu Siva Ranjani G. A classification of studies on properties of foam concrete[J]. Cement & Concrete Composites, 2009, 31 : 388 –396. (0) |
[5] | Kearsley E P, Wainright P J. The effect of porosity on the strength of foamed concrete[J]. Cement and Concrete Research, 2002, 32 : 233 –239. (0) |
[6] | Roy R L, Parant E, Boulay C. Taking into account the inclusions’ size in lightweight concrete compressive strength prediction[J]. Cement and Concrete Research, 2005, 35 : 770 –775. (0) |
[7] | Cook D J. Expanded polystyrene beads as lightweight aggregate for concrete[J]. Precast Concrete, 1973, 4 (4) : 691 –693. (0) |
[8] | Cook D J.Expanded polystyrene concrete[C]// Concrete Technology and Design:New Concrete Materials.London:Surrey University Press,1983:41-69. (0) |
[9] | Chen W F. Plasticity in reinforced concrete[M]. New York: McGraw-Hill, 1982 . (0) |
[10] | Chen W F.Concrete plasticity:past,present and future[C]// Strength Theory:Application,Development and Prospect for the 21st Century.Beijing:Science Press,1998:7-8. (0) |