2. 辽宁省环境保护厅, 辽宁 沈阳 110033;
3. 沈阳航空航天大学 能源与环境学院, 辽宁 沈阳 110136;
4. 中国科学院 上海天文台, 上海 200030
2. Department of Environmental Protection of Liaoning Province, Shenyang 110033, China;
3. College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China;
4. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
随着我国核电建设的发展, 对核事故应急工作提出了更严峻的挑战和更高的要求.针对新的挑战与要求, 开展与核事业发展新形势相适应的核应急预测预警技术研究, 已成为当前作好核事故应急工作的一项重要课题.
环境保护指挥自动化系统C4ISRE是指以计算机为核心, 具有环境指挥控制、环境污染态势侦察、灾难预警探测、通信、仿真演练和其他环境保护信息保障功能的环保领域的综合信息系统.它的主要功能是信息获取、处理、决策支持和对环保队伍实施指挥与控制, 以及环境污染应急事件模拟、演练、指挥、处理等[1-3].
本文基于C4ISRE系统整合HYSPLIT, AGI STK, Arcgis等技术实现对大气核污染扩散事故的预警、评估, 力求为核电站核污染预警技术的发展开拓一种新的方法.
1 实验方法 1.1 混合单粒子拉格朗日积分轨迹算法混合单粒子拉格朗日积分轨迹(hybrid single particle lagrangian integrated trajectory, HYSPLIT)模式4.9是由美国国家海洋和大气管理局(NOAA)的空气资源实验室和澳大利亚气象局在过去20年间联合研发的一种用于计算和分析大气污染物输送、扩散轨迹的专业模型.该模型具有处理多种气象要素输入场、多种物理过程和不同类型污染物排放源功能的较为完整的输送、扩散和沉降模式, 已经被广泛地应用于多种污染物在各个地区的传输和扩散的研究中.
假设大气核污染气团随风飘动, 那么它的移动轨迹就是其在时间和空间上位置矢量的积分, 即通过初始位置P(t)和第一猜测位置P′(t+Δt)的三维速度矢量的平均值来计算.速度矢量在空间和时间上进行线性内插, 计算公式如下[4-6].
第一猜测位置:
(1) |
最后位置:
(2) |
(3) |
(4) |
(5) |
式中:P为质点的初始位置; P′为质点的第一预测位置; t为仿真时间, s; v为风速, m/s; vmax为最大风速, m/s; Ztop为轨迹模式坐标系统的顶部, m; Zgl为地形高度, m; Zmsl为坐标下边界高度, m.
1.2 污染气团扩散轨迹迭代聚类算法空间变异(spatial variance, SV)是指在污染气团扩散轨迹迭代聚类过程中, 计算簇内沿着轨迹的端点的空间变异, 计算公式为[7]
(6) |
式中:Σ为沿着轨迹的端点数量的总和; P为轨迹端点的向量; M为这个簇的平均轨迹的端点的向量; i为簇的数量; j为污染气团扩散轨迹数; k为气团扩散轨迹上的端点数.
簇空间变异(cluster spatial variance, CSV)是在这个簇内所有污染气团扩散轨迹的空间变异的总和, 计算公式为
(7) |
总空间变异(total spatial variance, TSV)是所有簇的空间变异的总和, 计算公式为
(8) |
辽宁红沿河核电站拟以日本福岛核电站发生情况为仿真想定[8-12]:I131在2014年4月3日0点~4日0点之间发生扩散, 总的扩散量为150 PBq, 即每小时的排放量为5 PBq, 主要的仿真想定参数如下:污染源模拟高度为500 m, 污染气团扩散方向为前向, 总仿真时间为96 h, 污染源平均释放速率为5×1015/h, 释放时间为24 h, 初始释放时间为2014年4月3日0点, 污染物状态为气态, 弥散速度为0.01 m/s, Henry′s指数为30 mol·L-1·MPa-1, 核素的半衰期为8 d.
1.4 C4ISRE系统功能组成C4ISRE的“海/陆/空/天一体化”仿真系统功能组成[13-14]见图 1.
应用HYSPLIT仿真数据, 基于C4ISRE系统综合仿真引擎AGI STK[15], 对核污染气团进行仿真推演.推演仿真过程分为三个部分:核素污染气团扩散轨迹数据输入、基于STK内核的仿真控制、STK仿真内核计算及核素污染气团扩散数据推演显示.
核素污染气团扩散轨迹数据输入:仿真前需要将由HYSPLIT模拟出的核素污染气团扩散轨迹数据构建成STK需要的仿真控制数据文件格式, 本文采用GreatArc格式, 这种格式是一种扩展名为*.ga的仿真数据驱动格式, 采用仿真时间、经度、纬度、高度组合的方式对实体进行仿真推演, 控制文件格式见图 2.
基于C4ISRE/STK模拟推演后的核素I131大气扩散仿真图见图 3.
重要安置点、居民区、应急路线分布见图 4.
综合图 3、图 4和模拟推演可得到厂址应急预案中重要的安置点和居民区空中500 m处核污染气团的扩散情况.具体分析如下(截选):核污染气团从模拟起始时间2014年4月3日0时0分0秒开始由1号反应堆位置(39.769 N, 121.47 E)经过71.885 s(Lat 39.796, Lon 121.474, Alt 0.45:高度, km)到达常规岛废液贮存罐厂房东北面; 75.696 s(Lat 39.795, Lon 121.474, Alt 0.452) 经过常规岛废液贮存罐厂房上空, 全程历时3.811 s; 79.306 s(Lat 39.795, Lon 121.474, Alt 0.452) 扩散至热机修车间和仓库, 85.636 s(Lat 39.795, Lon 121.474, Alt 0.452) 经过热机修车间和仓库, 全程历时6.33 s; 91.596 s(Lat 39.794, Lon 121.474, Alt 0.452) 抵达废水处理站和车库, 93.896 s(Lat 39.896, Lon 121.474, Alt 0.452) 扩散离开这两个建筑区, 全程历时2.3 s; 132.267 s(Lat 39.791, Lon 121.474, Alt 0.452) 扩散至厂界海区边界;655.337 s扩散至烟羽应急区交界(Lat 39.752, Lon 121.472, Alt 0.445), 712 s进入黄泥洞村空界(Lat 39.747, Lon 121.472, Alt 0.444) 经过33.41 s扩散出黄泥洞村空界(Lat 39.745, Lon 121.472, Alt 0.444);1240.535 s扩散至烟羽应急区10 km交界处(Lat 39.706, Lon 121.470, Alt 0.437);2527.945 s扩散至长兴岛镇空界(Lat 39.604, Lon 121.465, Alt 0.421) 经过79.54 s于2607.485 s扩散出长兴岛镇空界(Lat 39.597, Lon 121.465, Alt 0.419);3 468.65 s扩展至烟羽应急区30 km交界处(Lat 39.526, Lon 121.462, Alt 0.407).各个相关区域的预警处置时间见图 5.
在图 5的横坐标中:0代表 1号反应堆; 1抵达常规岛废液贮存罐厂房东北面; 2抵达常规岛废液贮存罐厂房上空; 3抵达热机修车间和仓库; 4经过热机修车间和仓库; 5抵达废水处理站和车库; 6扩散离开这两个建筑区; 7扩散至厂界海区边界; 8扩散至烟羽应急区5 km交界; 9抵达黄泥洞村空界; 10扩散出黄泥洞村空界; 11扩散至烟羽应急区10 km交界处; 12扩散至长兴岛镇空界; 13扩散出长兴岛镇空界; 14扩展至烟羽应急区30 km交界处.
3 结论1) 将HYSPLIT的分析数据转化成STK需要的仿真控制文件, 并对核污染扩散态势进行推演模拟, 进而得到了以秒计算的核污染气团扩散态势.在STK中通过整合相关的*.shp数据及Arcgis专题分析工程文件*.mxd, 得出核污染气团对各个重要区域的详细影响及各个区域对核污染扩散的预警及应急处置反应时间.这种基于C4ISRE的推演技术为环境保护应急部门及核防化部队制定具体的战术方案提供了一种重要的技术支持.
2) 核污染气团从模拟起始时间2014年4月3日0时0分0秒开始由1号反应堆位置(39.769 N, 121.47 E)经过71.885 s到达常规岛废液贮存罐厂房东北面; 79.306 s扩散至热机修车间和仓库, 85.636 s经过热机修车间和仓库; 91.596 s抵达废水处理站和车库; 132.267 s扩散至厂界海区边界; 655.337 s扩散至烟羽应急区交界; 712 s进入黄泥洞村空界; 1240.535 s扩散至烟羽应急区10 km交界处; 2527.945 s扩散至长兴岛镇空界; 3 468.65 s扩展至烟羽应急区30 km交界.
[1] | Ma Y F, Hu X M.The research on the environmental assessment automation system:C4ISRE based on C4ISR theory[C]//The 6th International Conference on Information Technology:New Generations.Las Vegas:IEEE Computer Society, 2009:1485-1491. |
[2] | Ma Y F, Wang Q, Shi X F.Research on system simulation technology for joint prevention and control of environmental assessment based on C4ISRE[C]//Geo-Informatics in Resource Management and Sustainable Ecosystem Communications in Computer and Information Science.Wuhan:IEEE Computer Society, 2015:699-706. |
[3] |
马云峰. 基于C4ISR理论的环境影响评价系统仿真研究[D]. 沈阳: 东北大学, 2011: 27-63.
( Ma Yun-feng.The system simulation research for the environmental impact assessment based on C4ISR theory[D].Shenyang:Northeastern University, 2011:27-63. http://cdmd.cnki.com.cn/Article/CDMD-10145-1015562131.htm ) |
[4] | Stein A F. Noaa's hysplit atmospheric transport and dispersion modeling system[J]. American Meteorological Society, 2015, 124: 2059–2078. |
[5] | Su L, Yuan Z, Jimmy C H, et al. A comparison of hysplit backward trajectories generated from two GDAS datasets[J]. Science of the Total Environment, 2015(4): 527–537. |
[6] | Chen B, Ariel F. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large cusmelter[J]. Science of the Total Environment, 2016, 36(1): 17–25. |
[7] | Wang Y Q, Zhang X Y, Draxler R R. Trajstat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modeling & Software, 2009, 24(8): 938–939. |
[8] | Atomic Energy Society of Japan. The Fukushima Daiichi nuclear accident:final report of the AESJ investigation committee[M]. Tokyo: Springer, 2015: 43-62. |
[9] | Ahn J H. Reflections on the Fukushima Daiichi nuclear accident[M]. Tokyo: Springer, 2015: 85-103. |
[10] | Arnold C, Maurer G. Influence of the meteorological input on the atmospheric transport modeling with flex part of radionuclide's from the Fukushima Daiichi nuclear accident[J]. Journal of Environmental Radioactivity, 2015, 139(2): 212–225. |
[11] | Winiarek V, Bocquet M, Duhanyan N, et al. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations[J]. Atmospheric Environment, 2014, 88: 268–279. |
[12] | Saito K. Jma's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi nuclear power plant accident[J]. Journal of Environmental Radioactivity, 2015, 139(2): 185–199. |
[13] | Linda M. Spatial temporal information systems:an ontological approach using STK[M]. Boca Raton: Taylor & Francis Group, 2013: 3-13. |
[14] |
方冰, 宦国杨, 吴畏, 等.
空天地一体三维态势显示系统应用[J]. 指挥信息系统与技术, 2015, 6(2): 76–81.
( Fang Bing, Huan Guo-yang, Wu Wei, et al. Application of three-dimensional situation display system of space, sky and ground[J]. Command Information System and Technology, 2015, 6(2): 76–81. ) |
[15] |
丁溯泉, 张波, 刘世勇, 等.
STK使用技巧及载人航天工程应用[M]. 北京: 国防工业出版社, 2016: 46-82.
( Ding Su-quan, Zhang Bo, Liu Shi-yong, et al. Skills in use STK and the application for manned space project[M]. Beijing: National Defense Industry Press, 2016: 46-82. ) |