东北大学学报:自然科学版  2017, Vol. 38 Issue (11): 1669-1672  
0

引用本文 [复制中英文]

袁媛, 李静, 刘会立. 三维欧氏空间中的特殊曲线[J]. 东北大学学报:自然科学版, 2017, 38(11): 1669-1672.
[复制中文]
YUAN Yuan, LI Jing, LIU Hui-li. Special Curves in 3-Dimensional Euclidean Space[J]. Journal of Northeastern University Nature Science, 2017, 38(11): 1669-1672. DOI: 10.12068/j.issn.1005-3026.2017.11.030.
[复制英文]

基金项目

教育部基本科研业务青年教师科研启动基金资助项目(N130305005)

作者简介

袁媛(1980-), 女, 辽宁鞍山人, 东北大学博士研究生;
刘会立(1959-), 男, 辽宁辽阳人, 东北大学教授, 博士生导师。

文章历史

收稿日期:2015-06-15
三维欧氏空间中的特殊曲线
袁媛, 李静, 刘会立    
东北大学 理学院, 辽宁 沈阳 110819
摘要:利用活动标架及曲线的理论与性质等研究了曲线的密切球中心轨迹以及从切平圆的性质.首先, 研究了曲线和曲线的密切球中心轨迹之间的关系, 并利用原曲线的曲率、挠率来确定曲线密切球中心轨迹的形状.当原曲线的曲率、挠率满足一定关系, 它的密切球中心轨迹分别是一般螺线、Bertrand曲线、Mannheim曲线对、从切曲线和球面曲线.其次, 利用密切球面和从切平面的交线定义了从切圆并且研究了从切圆中心轨迹的性质.
关键词密切球中心轨迹    从切圆    曲率    挠率    从切曲线    
Special Curves in 3-Dimensional Euclidean Space
YUAN Yuan, LI Jing, LIU Hui-li    
School of Sciences, Northeastern University, Shenyang 110819, China
Corresponding author: LIU Hui-li, professor, E-mail: liuhl@mail.neu.edu.cn
Abstract: The properties of center locus of osculating sphere and the rectifying circle of curves were studied by using the theory and the properties of moving frame. First, the relationships between curves and the center locus of osculating sphere of curves were studied. Based on curvature and torsion, the figure of the center locus of osculating sphere of curves was obtained. And the center locus of osculating sphere of curves was generalized helix, Bertrand curves, Mannheim curves, rectifying curve and spherical curve, respectively, when curvature and torsion satisfied certain relation. Then, based on the intersection of osculating sphere and rectifying plane, the rectifying circles were obtained, and the properties of the center locus of rectifying circles were studied.
Key Words: center trace of osculating sphere    rectifying circle    curvature    torsion    rectifying curve    

空间曲线在几何学的理论研究方面具有重要的作用.根据特殊曲线的几何特征, 对应地得到了曲线的曲率和挠率所满足的代数式.例如一般螺线、Bertrand曲线、Mannheim曲线对、从切曲线和球面曲线等.这些特殊曲线对微分几何的发展有着重要的影响[1-10].

定义1[1]  设在曲线Γp0点邻近取三点p1, p2, p3.连同p0, 这4点一般地确定一个球面S.当p1, p2, p3沿曲线趋于p0时, 球面S的极限位置称为曲线Γp0点的密切球面.

引理1[1]  一条曲线Γ是球面曲线的充要条件:.

1 曲线与曲线的密切球中心轨迹

定理1  三维欧氏空间中, 任一条以弧长s为参数的挠曲线r(s)和以s为参数的密切球的球心轨迹r(s)满足, 则挠曲线r(s)的曲率κ(s)、挠率τ(s)和密切球中心轨迹r(s)的曲率κ(s)、挠τ(s)满足: .

证明  挠曲线r(s)的密切球的中心轨迹为, 对等式两边关于弧长s求导:

整理可得

(1)

由于γ是单位向量, 则有

, 则式(1)可变形为, 两边进一步关于弧长s求导得, .

分别代入曲线的曲率、挠率的一般表达式得.

定理2  三维欧氏空间中, 任一条以弧长s为参数的挠曲线r(s)和以弧长s为参数的曲线的密切球的球心轨迹, 若其中一条是一般螺线则另一条也为一般螺线, 其中κ(s), τ(s)分别为r(s)的曲率和挠率.

证明  由定理1可知密切球中心轨迹与曲线的曲率和挠率的关系为, 其中κ(s), τ(s)分别为曲线r(s)的曲率和挠率.则, .又曲线为一般螺线的充要条件是曲率与挠率的比值为定值, 因此当挠曲线r(s)与它的密切球的中心轨迹r(s)其中一条是一般螺线则另一条也为一般螺线.

定理3  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为Bertrand曲线, 当且仅当曲线r(s)的曲率与挠率满足:

其中: ; κ(s), τ(s)分别为r(s)的曲率和挠率; λ, μ为常数.

证明  曲线r(s)为Bertrand曲线的充要条件是存在实数λ1, μ1使得

(2)

其中κ, τ分别为曲线r(s)的曲率和挠率.又κ= , 代入式(2), 得, 即存在实数λλ1, μ=μ1使得

(3)

, 代入式(3)可得

(4)

上述过程显然可逆, 因此当且仅当挠曲线r(s)的曲率和挠率满足式(4)时, 它的密切球中心轨迹是Bertrand曲线.

同样方式可得当密切球中心轨迹r(s)分别为Mannheim曲线、Mannheim侣线、丛切曲线、球面曲线时的定理.

定理4  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为Mannheim曲线, 当且仅当曲线r(s)的曲率与挠率满足:

(5)

其中: ; κ(s), τ(s)分别为r(s)的曲率和挠率; λ为常数.

定理5  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为Mannheim侣线, 当且仅当曲线r(s)的曲率与挠率满足:

(6)

其中: ; κ(s), τ(s)分别为r(s)的曲率和挠率; λ为常数.

定理6  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为丛切曲线, 当且仅当曲线r(s)的曲率与挠率满足, 其中: 分别为r(s)的曲率和挠率; λ, μ为常数.

定理7  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为球面曲线, 当且仅当曲线r(s)的曲率与挠率满足:

(7)

其中: ; κ(s), τ(s)分别为r(s)的曲率和挠率.

推论1  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)和r(s)为Bertrand曲线, 当且仅当曲线r(s)的曲率与挠率满足λτ+μκ=1, 其中, κ(s), τ(s)分别为r(s)的曲率和挠率, λ, μ为常数.

推论2  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为Mannheim曲线, 当且仅当曲线r(s)的曲率与挠率满足τ=λ(κ2+τ2), 其中, κ(s), τ(s)分别为r(s)的曲率和挠率, λ为常数.

推论3  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为Mannheim侣线, 当且仅当曲线r(s)的曲率与挠率满足, 其中γ(s), κ(s), τ(s)分别为r(s)的曲率和挠率, λ, μ为常数.

推论4  三维欧氏空间中, 任一以s为弧长参数的挠曲线r(s)和以s为弧长参数的密切球中心轨迹r(s), 则r(s)为球面曲线, 当且仅当曲线r(s)的曲率与挠率满足=0, 其中γ(s), κ(s), τ(s)分别为r(s)的曲率和挠率.

2 曲线的从切圆中心轨迹

定义2  曲线r(s)的密切球面与从切平面的交线圆的圆心轨迹方程, 称为从切圆中心轨迹.

定理8  如果曲线r(s)的曲率和挠率满足:

(8)

则曲线r(s)是Mannheim侣线, 并且它的Mannheim曲线是它的从切圆的中心轨迹r1(s).

其中: ; a为常数; κ(s), τ(s)分别为r(s)的曲率和挠率.

证明  若r1(s)是Mannheim曲线, r(s)是Mannheim侣线, 则由Mannheim对的定义可知r1(s)和r(s)需满足关系式: r1(s)=r(s)+λ(s)γ, 两边关于弧长s求导:-λ(s)τβ, 由Mannheim曲线对的定义可知β1//γ, 两边同时与γ作内积得λ′(s)=0, 因此λ为常数.而曲线r(s)的从切圆中心轨迹r1(s)的方程为, 因此得到为常数.又空间曲线r(s)为Mannheim侣线的充要条件是其曲率κ(s)和挠率τ(s)满足τ′= , 其中λ为常数.因此, 当曲线r(s)的曲率和挠率同时满足:

(9)

此时r1(s)是Mannheim曲线, r(s)是Mannheim侣线.整理式(9)即得.证毕.

3 结论

1) 给出了三维欧氏空间中挠曲线的密切球中心轨迹分别为Mannheim曲线、Mannheim侣线、丛切曲线、球面曲线时原曲线的曲率和挠率所满足的关系.

2) 给出了三维欧氏空间中挠曲线是Mannheim侣线,并且它的Mannheim曲线是原曲线的丛切圆中心轨迹时,原曲线的曲率和挠率的关系.

参考文献
[1] 吴大任. 微分几何讲义[M]. 北京: 人民教育出版社, 1981: 38-63.
( Wu Da-ren. Lecturs on differential geometry[M]. Beijing: People′s Education Press, 1981: 38-63. )
[2] Ekmekei N, Llarslan K. Higher curvature of a regular curve in Lorentzian space[J]. Journal of Institute of Mathematics and Computer Science, 1998, 11(2): 97–102.
[3] Ekmekei N, Llarslan K. On Bertrand curves and characterization[J]. Differential Geometry-Dynamical Systems, 2001, 3(2): 17–24.
[4] Schief W K. On the integrability of Bertrand curves and Razzaboni surfaces[J]. Journal of Geometry and Physics, 2003, 45: 130–150. DOI:10.1016/S0393-0440(02)00130-4
[5] Huili L, Fan W. Mannheim partner curves in 3-space[J]. Journal of Geometry, 2008, 88(1): 120–126.
[6] Choi J H, Kang T H, Kim Y H. Bertrand curves in 3-dimensional spaces forms[J]. Applied Mathematics and Computation, 2012, 219: 1040–1046. DOI:10.1016/j.amc.2012.07.008
[7] Tuncer Y, Sperpil U. New representations of Bertrand pairs in Euclidean 3-space[J]. Applied Mathematics and Computation, 2012, 219: 1833–1842. DOI:10.1016/j.amc.2012.08.023
[8] Matsuda H, Yorozu S. Notes on Bertrand curves[J]. Yokohama Mathematical Journal, 2003, 50: 41–58.
[9] Izumiya S, Takeuchi N. Special curves and ruled surface[J]. Contributions to Algebra and Geometry, 2003, 44(1): 203–212.
[10] Carlsen B, Clelland J N. The geometry of lightlike surfaces in Minkowski space[J]. Journal of Geometry and Physics, 2013, 74: 43–55. DOI:10.1016/j.geomphys.2013.07.005