东北大学学报:自然科学版  2019, Vol. 40 Issue (12): 1707-1710  
0

引用本文 [复制中英文]

沈鑫珺, 李德志, 唐帅, 王国栋. 两相区轧制后淬火引入马氏体降低钢板屈强比[J]. 东北大学学报:自然科学版, 2019, 40(12): 1707-1710.
[复制中文]
SHEN Xin-jun, LI De-zhi, TANG Shuai, WANG Guo-dong. Introducing Martensite to Reduce Yield Ratio of Steel Plates Rolled in Dual-Phase Region by Quenching[J]. Journal of Northeastern University Nature Science, 2019, 40(12): 1707-1710. DOI: 10.12068/j.issn.1005-3026.2019.12.007.
[复制英文]

基金项目

博士后创新人才支持计划项目(BX201700301);东北大学博士后基金资助项目(20180302)

作者简介

沈鑫珺(1989-),男,安徽淮南人,东北大学博士后研究人员;
王国栋(1942-),男,辽宁大连人,东北大学教授,博士生导师,中国工程院院士。

文章历史

收稿日期:2019-04-11
两相区轧制后淬火引入马氏体降低钢板屈强比
沈鑫珺 , 李德志 , 唐帅 , 王国栋     
东北大学 轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819
摘要:晶粒细化和分裂增韧可使两相区轧制的层状超细晶钢板具有高强度同时韧性优异.前期研究发现轧后空冷生成的层状超细晶钢板,存在屈强比偏高的问题,高达0.9.本研究通过轧后淬火在层状超细晶组织中引入马氏体的方法降低屈强比.研究发现,在750 ℃和810 ℃轧制后淬火,层状超细晶组织中可生成体积分数约为14%的马氏体.此部分马氏体使拉伸过程中呈现连续屈服行为,提高加工硬化率,使钢板的屈强比降至0.7以下,解决了屈强比偏高的问题.此外,实验钢在具有高强度的同时,韧性优良.
关键词两相区轧制    层状超细晶组织    屈强比    马氏体    加工硬化率    
Introducing Martensite to Reduce Yield Ratio of Steel Plates Rolled in Dual-Phase Region by Quenching
SHEN Xin-jun , LI De-zhi , TANG Shuai , WANG Guo-dong     
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Corresponding author: SHEN Xin-jun, E-mail: shenxinjun2008@163.com
Abstract: Grain refinement and delamination toughening can endow high strength and superior toughness to laminated and ultrafine-grained steel plates rolled in the dual-phase region. The previous study indicated that the laminated and ultrafine-grained steel plates possessed a high yield ratio up to 0.9 when air cooling was applied after rolling. In the present study, martensite was introduced to the laminated and ultrafine-grained steel plates by quenching after rolling to reduce the yield ratio. We found that martensite with a volume fraction of ~14% was generated by quenching followed by rolling at 750 ℃ or 810 ℃. Continuous yielding behavior was present during tensile testing due to the existence of martensite, and high work hardening rate was obtained. As expected, the reduced yield ratio lower than 0.7 was realized so that the problem that yield ratio was too high was solved for the laminated and ultrafine-grained steel plates. Moreover, high strength and good toughness were acquired.
Key words: rolling in the dual-phase region    laminated and ultrafine-grained microstructure    yield ratio    martensite    work hardening rate    

钢材的韧性主要通过晶粒细化或引入残余奥氏体来提高[1-3].晶粒细化在提高钢材韧性的同时,可提高强度,是一种理想的韧化方式.但常规工艺下,晶粒细化的能力有限.为获得残余奥氏体,需在钢中添加一定量的镍或锰元素.此种方式资源消耗大,成本高.

如冲击过程中断口发生分裂,则可显著降低裂纹尖端的法向应力,促进塑性变形,提高韧性.Kimura等基于孔型温变形工艺,通过分裂使屈服强度高达1 840 MPa的Fe-0.4%C-2%Si-1%Cr-1%Mo钢在-20 ℃到-60 ℃的温度范围内,夏比冲击吸收功超过200 J[4];Zou等通过分裂使中锰钢板的上平台能量值超过450 J[5].冲击断口分裂提高韧性的方法可称为分裂增韧.前期研究发现,两相区轧制可把低碳微合金钢的晶粒尺寸细化至3 μm以下,产生层状超细晶组织[6].通过分裂使钢板具有优异的韧性,但钢板的屈强比高达0.9.本文拟通过在两相区轧制后淬火引入一定量的马氏体,来降低钢板的屈强比,解决层状超细晶钢板屈强比过高的问题.

1 实验材料和方法

实验用钢取自国内某钢厂低碳微合金钢连铸坯,化学成分(质量分数)为Fe-0.10%C-0.32%Si-1.5%Mn-0.04%Nb-0.032%V-0.015%Ti.实验钢的Ac1Ac3温度分别为723 ℃和854 ℃[6].采用轧制技术及连轧自动化国家重点实验室的ϕ450 mm双辊可逆实验轧机,把钢坯热轧至30 mm,随后水淬至室温.在水淬钢板上切取长150 mm,宽70 mm的小钢板,作为后续两相区轧制实验的原料.分别把小钢板放入炉腔温度为750 ℃和810 ℃的加热炉中保温1.5 h,使钢板温度充分均匀.随后采用ϕ450 mm双辊可逆实验轧机进行轧制实验.轧制规程和每道次的等效应变速率()如表 1所示.第3道次后把钢板放入加热炉中5 min,以补偿温降.轧制结束后把钢板快速水淬至室温,以引入马氏体.两块钢板分别简称为DPR750和DPR810(DPR,dual-phase region rolling).

表 1 轧制规程和每道次的等效应变速率() Table 1 Rolling schedule and equivalent strain rate ()

在实验钢1/4宽度位置切取金相试样,研磨抛光后,采用体积分数为4%的硝酸乙醇溶液腐蚀,在ZEISS ULTRA 55场发射扫描电镜(SEM)上观察钢板纵断面的组织.基于实验钢组织的SEM形貌,采用面积法测量马氏体的体积分数.采用电子背散射衍射(EBSD)获得组织的晶界分布特征.采用电解抛光制备试样,并在ZEISS ULTRA 55场发射扫描电镜上进行EBSD分析.沿钢板的轧向加工平行区直径4 mm的圆棒拉伸试样,原始标距20 mm,按GB/T 228.1—2010执行.拉伸试验在Instron 4206试验机上进行,采用恒定横梁位移控制模式,速度为3 mm/min.沿钢板的轧向加工5 mm×10 mm×55 mm的V型缺口冲击试样,采用三思ZBC2452-B摆锤冲击试验机检测实验钢20~-40 ℃的夏比冲击韧性.

2 结果与讨论

DPR750和DPR810实验钢的SEM形貌和晶界分布如图 1所示.可知,两相区轧制后淬火,在组织中引入了一定量的马氏体.在DPR750钢中,马氏体呈压扁状,在铁素体晶界处沿轧向分布,体积分数为14.4%;同时,铁素体是基体,由大角晶界包围的铁素体平均晶粒尺寸为2.7 μm,组织整体呈层状分布,较为不均匀.在DPR810钢中,马氏体的扁平状程度减弱,体积分数为14.6%,铁素体基体倾向等轴状,由大角晶界包围的铁素体平均晶粒尺寸为2.6 μm,组织相对均匀.由晶界分布图可知,DPR750钢组织中含有较多的小角晶界,比例为55.1%;组织中存在拉长的晶粒,也存在由大角晶界包围的等轴晶.DPR810钢的小角晶界的比例降低至48.7%,由大角晶界包围的等轴超细晶的数量显著增加.

图 1 实验钢组织的SEM形貌和EBSD分析结果 Fig.1 SEM morphologies and EBSD analyses results of the tested steel plates (a)—DPR750-SEM; (b)—DPR810-SEM; (c)—DPR750-EBSD; (b)—DPR810-EBSD.

研究发现,铁素体在变形过程中受Z参数(Z= exp(Q/RT))控制,可发生动态回复和动态再结晶[7].由于铁素体具有高的层错能,使变形过程中形成的位错很容易发生交滑移和攀移,无法累积足够的能量来推动动态再结晶的发生,导致动态回复成为主要的组织演变机制,从而形成层状超细晶组织[8].这就解释了750 ℃轧制时的组织演变情况.升高变形温度或降低应变速率会促进动态再结晶的发生,生成等轴的超细晶组织[9].因此,轧制温度升高至810 ℃时,发生一定的再结晶,生成了一定数量的等轴超细晶晶粒,组织的层状结构减弱,小角晶界的比例降低.虽然DPR750钢板组织的等轴超细晶晶粒的尺寸小于DPR810钢板的,但DPR750钢板中存在大量粗大、拉长的铁素体晶粒,使其铁素体平均晶粒尺寸略大于DPR810钢板的铁素体平均晶粒尺寸.

实验钢拉伸过程中的工程应力-工程应变曲线如图 2所示,拉伸性能如表 2所示.可知,两块实验钢在拉伸过程中均表现出铁素体/马氏体双相钢所具有的典型的连续屈服现象,加工硬化率在0.17以上,具有低的屈强比,均低于0.7.相比前期研究中层状超细晶铁素体/珠光体组织高达0.9左右的屈强比,本研究达成了预期目标,即引入马氏体组织,实现屈强比的显著降低.

图 2 实验钢拉伸过程的工程应力-工程应变曲线 Fig.2 Engineering stress-strain curves of the tested steel plates during tensile testing
表 2 实验钢的拉伸性能 Table 2 Tensile properties of the tested steel

常规的铁素体/珠光体组织,普遍认为是由于柯氏气团的存在,使钢材在拉伸过程中存在气团与位错的钉扎与反钉扎过程,从而产生屈服平台[10].对于铁素体/马氏体组织,马氏体相变过程中发生的体积膨胀,会在其相邻的铁素体晶粒中引入一定量的可动位错.拉伸过程中,此种可动位错会率先开动,从而发生塑性变形,避免柯氏气团的影响,表现出连续屈服行为.同时,马氏体高的硬度会阻碍位错的滑移,促进位错增殖,提高局部强度,使变形均匀分布,从而增大加工硬化率,提高抗拉强度,降低屈强比[11-12].此外,DPR750钢相比DPR810钢,具有高强度、高屈强比和低伸长率.这应是DPR750钢具有较高位错密度(小角晶界比例高)导致的.高密度位错有利于强度提高,同时对伸长率有害.

实验钢的夏比冲击韧性如图 3所示.由图可知,DPR810钢相对DPR750钢具有更高的韧性.DPR810钢,在20 ℃时具有最高的吸收功(66 J),当温度降至0 ℃时,吸收功降至57 J,随着温度降至-20 ℃和-40 ℃时,吸收功基本保持不变.对于DPR750钢,在20~-20 ℃温度范围内,冲击吸收功保持在45 J左右,当温度降至-40 ℃时,吸收功快速降至32 J,降幅为28.9%.前期研究中轧后空冷的工艺,810 ℃和750 ℃变形温度的钢板,20~-40 ℃范围内,冲击吸收功分别在100 J和90 J左右.对比可知,虽然本研究中实验钢的屈强比显著降低,但韧性发生一定程度恶化.可能原因是马氏体硬度较高,提高了第二相与铁素体基体间的硬度差,使冲击过程中应力容易在铁素体和马氏体相界面处集中,从而促进裂纹形核,降低韧性.后续研究可采用合适的退火工艺来降低马氏体硬度,在保证屈强比不显著增大的前提下提高实验钢的韧性.

图 3 实验钢的夏比冲击韧性 Fig.3 Charpy impact toughness of the tested steel plates
3 结论

1) 在两相区轧制后淬火,当变形温度为750 ℃和810 ℃时,可在低碳微合金钢的组织中引入体积分数为14%左右的硬相马氏体.铁素体为基体,呈层状分布,实现超细化.轧制温度由750 ℃升高至810 ℃,组织发生一定程度的再结晶,更趋向均匀,同时层状程度减弱.

2) 马氏体提高了实验钢拉伸过程中的加工硬化率,将屈强比降至0.7以下,解决了前期研究中两相区轧制后空冷钢板屈强比偏高的问题.实验钢在具有高强度的同时,伸长率较高,韧性优良.

参考文献
[1]
Wang L, Gao C R, Wang Y F, et al. Effect of thermomechanical controlled processing parameters on microstructure and properties of Q460q steel[J]. Journal of Iron and Steel Research International, 2010, 17(1): 38–43. DOI:10.1016/S1006-706X(10)60042-8
[2]
Wang M, Liu Z Y, Li C G. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238–249. DOI:10.1007/s40195-016-0496-9
[3]
Chen J, Lyu M Y, Tang S. Coupled toughening of a low carbon medium manganese heavy steel plate investigated by electron back-scattered diffraction (EBSD)[J]. Materials Letters, 2016, 175: 203–206. DOI:10.1016/j.matlet.2016.04.022
[4]
Kimura Y, Inoue T, Yin F X, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel[J]. Science, 2008, 320(5879): 1057–1060. DOI:10.1126/science.1156084
[5]
Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite[J]. Materials Science and Engineering:A, 2017, 707: 270–279. DOI:10.1016/j.msea.2017.09.059
[6]
Shen X J, Tang S, Wu Y J, et al. Evolution of microstructure and crystallographic texture of microalloyed steel during warm rolling in dual phase region and their influence on mechanical properties[J]. Materials Science and Engineering:A, 2017, 685: 194–204. DOI:10.1016/j.msea.2016.12.108
[7]
Humphryes F J, Hatherly M. Recrystallization and related annealing phenomena (2nd ed)[M]. Amsterdam: Elsevier, 2004: 417-417.
[8]
Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels[J]. Materials Science and Engineering:A, 2006, 441(1/2): 1–17.
[9]
Ohmori A, Torizuka S, Nagai K, et al. Effect of deformation temperature and strain rate on evolution of ultraline grained structure through single-pass large-strain warm deformation in a low carbon steel[J]. Materials Transactions, 2004, 45(7): 2224–2231. DOI:10.2320/matertrans.45.2224
[10]
Bhadeshia H K D H, Honeycombe S R. Steels microstructure and properties (3rd ed)[M]. Cambridge: Cambridge University, 2006.
[11]
Li C N, Yuan G, Ji F Q, et al. Effects of auto-tempering on microstructure and mechanical properties in hot rolled plain C-Mn dual phase steels[J]. Materials Science and Engineering:A, 2016, 665: 98–107. DOI:10.1016/j.msea.2016.04.038
[12]
Zhang J C, Di H S, Deng Y G, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel[J]. Materials Science and Engineering:A, 2015, 627: 230–240. DOI:10.1016/j.msea.2015.01.006