2. 东北大学 机械工程与自动化学院, 辽宁 沈阳 110819;
3. 沈阳航空航天大学 机电工程学院, 辽宁 沈阳 110136
2. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
3. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
高精度圆柱齿轮是高性能齿轮传动系统的重要组成部分.在圆柱齿轮加工方法中, 滚齿加工是一种被广泛应用的粗加工方法, 滚齿切削力是表征加工过程的一个重要物理参数.实现滚削力的准确预测是研究滚刀磨损与切削振动特性以及切削参数优化的关键理论基础和依据[1].
Umezaki等利用解析法分析滚齿切削过程, 综合考虑切屑流动方向、连续/断续切削对切削力系数的影响, 计算出整体滚刀的切削力[2]. Abood建立一个功能运动模型来模拟滚齿切削过程, 利用数值计算方法求出未变形切屑厚度, 进而构建出瞬时滚削力学模型, 并通过试验进行验证[3]. Klocke等基于空间离散方法开发出滚齿切削仿真软件SPARTApro, 实现切削力精确计算[4]. Tapoglou等利用CAD软件模拟滚齿切削过程, 计算出切削过程几何参量, 结合Kienzle-Victor力学模型, 预测出单齿和整体滚刀切削力[5]. Sabkhi等借助CAD软件计算出滚齿切削未变形切屑厚度, 基于ALE法确定切削力系数, 进而计算出滚削力[6]. Bouzakis等通过集成仿真环境对滚齿加工中切屑形成机制进行仿真, 同时对切削过程中的切削温度和应力进行了预测[7]. Friderikos等为研究高速钢滚刀的崩刃现象, 利用三维刚黏塑性有限元方法对切屑形成过程进行仿真, 明确了切屑挤压现象产生的机理, 获取了切屑形成过程中的应力、应变等物理量[8]. Stark等为确定导致齿轮加工过程热变形的热流密度, 通过有限元仿真软件对飞刀切齿过程切削力和切削温度进行仿真和试验验证[9]. Liu等利用有限元软件Third Wave AdvantEdge对滚齿加工过程中的切削力进行仿真, 并通过单齿铣削力试验进行验证[10]. Habibi等基于空间离散法构建端面滚齿切削过程, 实现未变形切屑有效提取, 结合斜角切削理论计算切削力[11].
本文在已有的基于实体建模的滚齿切削过程仿真研究基础上, 将滚刀切削刃离散为微元切削刃, 构建微元切削力, 进而通过积分、求和运算获得整体滚刀的滚齿切削力预测模型; 便于滚齿切削力测量, 结合Kistler 9123C旋转测力仪和DMU50五轴数控加工中心进行滚齿切削力测量试验, 试验结果验证了该滚削力建模方法的有效性.
1 滚齿切削过程建模 1.1 切削过程几何仿真图 1所示, 与常规的铣削和车削等加工方式不同, 滚齿切削中滚刀轴向进给的同时与工件也必须保持严格的展成运动关系, 具有多刃断续切削和变切屑厚度的特点, 属于典型的非自由切削; 针对滚齿切削, 作者前期研究中[12-13]构建了基于实体建模技术的滚齿切削几何仿真模型, 该模型准确描述滚刀上任意一刀齿的材料去除过程和精确计算出未变形切屑厚度.
本文采用Kienzle-Victor力学模型计算切削力, 则滚刀刀齿切削刃上每一微元切削力表示为
(1) |
式中:dFt(k, i), dFr(k, i), dFa(k, i)分别表示滚刀第k个刀齿切削刃上第i个微元切向、径向、轴向切削力; Kt, Kr和Ka为切削力系数; mt, mr和ma为切屑厚度指数.
由图 2所示, 微元切削力的方向与参与微元切削刃的位置有关, 通过投影可以得到第k个刀齿坐标系Ohkxhkyhkzhk下切削刃上第i个微元切削力:
(2) |
ψ为切削刃位置角, 取值为
式中,αx为滚刀刀齿齿形角.
沿切削刃累加求和, 可得k号刀齿产生的滚削力, 即
(3) |
图 3所示, 经过坐标转换, k号刀齿切削力在0号刀齿坐标系Oh0xh0yh0zh0的投影表示为
(4) |
将m个参与切削刀齿的切削力进行累加求和, 可得整个滚刀在其自身坐标系O6x6y6z6下的瞬时切削力, 即
(5) |
为了验证所建立滚削力模型的有效性, 进行了一系列几何仿真与试验.仿真与试验所采用滚刀和工件的几何参数, 以及切削参数如表 1所示.滚刀前角为0°时, 任一微元刃视为直角切削, 此时dFr=Kr=mr=0.滚刀和工件材料分别为高速钢6542和45号钢.
表 2所示为通过仿真计算后各刀齿在其展成位置形成的未变形切屑几何实体. 图 4所示为典型的未变形切屑厚度分布.
滚齿切削力试验所用机床为DMU50五轴立式加工中心, 旋转测力仪型号为Kistler9123C. 图 5所示为滚削力在线采集过程示意图, 图 6所示为滚削力测量现场图.
采用切削力系数如表 3所示.由于滚刀刀齿瞬时切削状态的复杂性, 当存在切屑流动干涉时, 切削力急剧增加, 采用单一切削力系数将会降低切削力预测精度.因此, 本文中以未变形切屑厚度在刀齿切削刃上的几何分布为依据, 将顶刃、圆弧刃和侧刃同时产生切屑视为存在切屑流动干涉, 采用1组切削力系数计算滚削力; 否则视为单刃直角切削, 采用2组切削力系数计算滚削力.
如图 7所示, 为便于与实际测量值进行对比分析, 还应将式(5)滚削力预测值从滚刀坐标系O6x6y6z6转换到测力仪坐标系Odxdydzd下, 即
(6) |
以滚刀旋转一周, 即360°作为一个切削周期, 滚削力的预测值与实测值对比结果如图 8所示.从图 8中可见, 切削力Fxd和Fyd实测值与预[CM(21]测值的波形曲线在形状、变化趋势以及数值上基本一致, 但在某些局部区域存在较大差异, 其主要是由切削过程中的振动以及预测值中考虑切屑流动干涉采用恒定的切削力系数等因素造成的; 这些因素同时也是较小切削力Fzd的预测值和实测值波形变化规律基本相同而幅值差异较大的主要原因.总体而言滚削力实测值与预测值在幅值和趋势上吻合良好, 证明了该滚削力预报模型的有效性与准确性.
1) 基于实体建模技术建立了滚齿切削过程几何仿真方法, 有效地提取出未变形切屑厚度.
2) 基于Kienzle-Victor力学模型, 结合微分离散的思想, 建立了滚齿切削力预测模型.
3) 采用Kistler9123C测力仪, 结合DMU50五轴立式加工中心, 构建了滚齿切削力测量方法.
4) 试验结果表明, 本文提出的方法能够很好地预测滚齿加工中的切削力幅值及其变化规律.
[1] |
Bouzakis K D, Lili E, Michailidis N, et al.
Manufacturing of cylindrical gears by generating cutting processes:a critical synthesis of analysis methods[J]. CIRP Annals—Manufacturing Technology, 2008, 57(2): 676–696.
DOI:10.1016/j.cirp.2008.09.001 |
[2] |
Umezaki Y, Ariura Y.
Calculative simulation of hobbing forces:investigation of specific cutting force and friction angle[J]. Transactions of the Japan Society of Mechanical Engineers C, 1998, 64(622): 2255–2260.
DOI:10.1299/kikaic.64.2255 |
[3] |
Abood A M.Dynamic analysis of the cutting forces in gear hobbing[D].Newcastle: Newcastle University, 2003.
|
[4] |
Klocke F, Gorgels C, Schalaster R, et al.An innovative way of designing gear hobbing processes[C]// Proceedings of the International Conference on Gears.Munich, 2010: 393-404.
|
[5] |
Tapoglou N, Antoniadis A.
CAD-based calculation of cutting force components in gear hobbing[J]. Journal of Manufacturing Science & Engineering, 2012, 134(3): 1013–1020.
|
[6] |
Sabkhi N, Moufki A, Nouari M, et al.
Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation[J]. Journal of Manufacturing Processes, 2016, 23: 1–12.
DOI:10.1016/j.jmapro.2016.05.002 |
[7] |
Bouzakis K D, Friderikos O, Mirisidis I, et al.Determination of chip geometry and cutting forces in gear hobbing by a FEM-based simulation of the cutting process[C]//Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations.Chemnitz, 2005: 49-58.
|
[8] |
Friderikos O, Maliaris G, David C N, et al.
An investigation of cutting edge failure due to chip crush in carbide dry hobbing using the finite element method[J]. International Journal of Advanced Manufacturing Technology, 2011, 57(1/2/3/4): 297–306.
|
[9] |
Stark S, Beutner M, Lorenz F, et al.
Experimental and numerical determination of cutting forces and temperatures in gear hobbing[J]. Key Engineering Materials, 2012, 504/505/506: 1275–1280.
|
[10] |
Liu W, Ren D, Usui S, et al.
A gear cutting predictive model using the finite element method[J]. Procedia CIRP, 2013, 8: 51–56.
DOI:10.1016/j.procir.2013.06.064 |
[11] |
Habibi M, Chen Z C.
An accurate and efficient approach to undeformed chip geometry in face-hobbing and its application in cutting force prediction[J]. Journal of Mechanical Design, 2016, 138(2): 023302.
|
[12] |
张荣闯, 王宛山, 王军.
滚齿切削厚度仿真计算[J]. 东北大学学报(自然科学版), 2015, 36(1): 95–98.
( Zhang Rong-chuang, Wang Wan-shan, Wang Jun. Simulation calculation of undeformed chip thickness in gear hobbing[J]. Journal of Northeastern University(Natural Science), 2015, 36(1): 95–98. DOI:10.3969/j.issn.1005-3026.2015.01.021 ) |
[13] |
张荣闯, 王军, 王博, 等.
滚齿加工运动三维仿真[J]. 系统仿真学报, 2015, 27(11): 2729–2734.
( Zhang Rong-chuang, Wang Jun, Wang Bo, et al. 3-dimensional kinematics simulation of gear hobbing[J]. Journal of System Simulation, 2015, 27(11): 2729–2734. ) |