东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (1): 22-26.DOI: 10.12068/j.issn.1005-3026.2017.01.005

• 信息与控制 • 上一篇    下一篇

基于压缩实体摘要图的RDF数据关键词查询

林晓庆1,2, 马宗民1   

  1. (1.东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 辽东学院 信息工程学院, 辽宁 丹东118003)
  • 收稿日期:2015-09-13 修回日期:2015-09-13 出版日期:2017-01-15 发布日期:2017-01-13
  • 通讯作者: 林晓庆
  • 作者简介:林晓庆(1979-),女,辽宁丹东人,东北大学博士研究生; 马宗民(1965-),男,山东金乡人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61370075); 教育部新世纪优秀人才支持计划项目(NCET-05-0288).

RDF Keyword Search by the Condensed Entity Summary Graph

LIN Xiao-qing1,2, MA Zong-min1   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2.School of Information Engineering, Eastern Liaoning University, Dandong 118003, China.
  • Received:2015-09-13 Revised:2015-09-13 Online:2017-01-15 Published:2017-01-13
  • Contact: LIN Xiao-qing
  • About author:-
  • Supported by:
    -

摘要: 提出一种将关键词查询转换为SPARQL查询的方法来进行RDF数据的搜索.首先,根据RDF本身的关联特点,构建一个压缩实体摘要图;然后,借助关键词与所在实体的索引,将所查询的关键词在该摘要图上进行定位,通过图双向搜索算法找出包含关键词实体的前k子图,获得查询实体之间的关系,再联合最初的关键词及他们的属性,构建SPARQL查询;最后使用SPARQL搜索引擎执行查询.实验结果表明,所提方法较其他方法有更快的响应时间及更高的准确率.

关键词: RDF, SPARQL, OPS索引, 压缩实体摘要图, 双向搜索

Abstract: A method of translating keyword queries to SPARQL queries was presented to implement RDF (resource description framework) keyword search. Firstly, a condensed entity summary was constructed according to connections of RDF data. Then, keywords were located on the designated nodes of the summary graph by the OPS (object predicate subject) index. Top-k subgraphs connecting all keyword entities would be found by a bidirectional search algorithm. Finally, SPARQL queries were obtained by incorporating inter-entity relationships of top-k subgraphs, keywords and their properties, and SPARQL queries were executed by a SPARQL search engine. The experimental results show that a faster response time and a higher accuracy than the existing ones are achieved.

Key words: RDF (resource description framework), SPARQL, OPS (object predicate subject) index, condensed entity summary graph, bidirectional search

中图分类号: