东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (11): 1527-1532.DOI: 10.12068/j.issn.1005-3026.2019.11.002

• 信息与控制 • 上一篇    下一篇

一种基于旁信息增强的协同过滤自动编码器模型

刘海博1,2, 冯时1, 于戈1   

  1. (1. 东北大学 计算机科学与工程学院, 辽宁 沈阳110169; 2. 河北大学 网络空间安全与计算机学院, 河北 保定071002)
  • 收稿日期:2018-12-20 修回日期:2018-12-20 出版日期:2019-11-15 发布日期:2019-11-05
  • 通讯作者: 刘海博
  • 作者简介:刘海博(1979-),男,河北保定人,东北大学博士研究生; 于戈(1962-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61872074); 河北省自然科学基金资助项目(F2015201140,F2017201208) .

Auto-Encoder for Collaborative Filtering Based on Side-Information Enhancement

LIU Hai-bo1,2, FENG Shi1, YU Ge1   

  1. 1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China; 2. School of Cyber Security and Computer, Hebei University, Baoding 071002, China.
  • Received:2018-12-20 Revised:2018-12-20 Online:2019-11-15 Published:2019-11-05
  • Contact: LIU Hai-bo
  • About author:-
  • Supported by:
    -

摘要: 针对用户评分预测不准确的问题,提出了一种基于旁信息(side-information)对用户兴趣进行预测的协同过滤自动编码器推荐模型,给出了模型的设计原理、损失函数以及具体结构.模型使用单隐藏层自动编码器实现,用户评分与旁信息同为模型的输入/输出数据,旁信息也直接参加模型的训练,这种设计不仅降低了模型的规模和复杂度,而且旁信息可以直接对用户兴趣进行修正.同时,通过对训练数据集合的合理划分与扩充,使得训练的网络模型增加了表达能力.在真实数据集上的对比实验表明,本文提出的方法提高了评分预测的准确度,具有一定的实用价值.

关键词: 自动编码器, 协同过滤, 旁信息, 推荐系统, 评分预测

Abstract: In view of inaccurate rating prediction of traditional recommendation model, a model based on side-information enhanced collaborative filtering auto-encoder was proposed, and the design principle, loss function and structure of the model were discussed in detail. The model was implemented by a single hidden layer auto-encoder network with ratings and side-information as input/output data. The model was directly trained by ratings and side-information. The proposed framework not only reduces the scale and complexity of the model, but also amends the user’s interest with side-information. At the same time, the representation ability of the trained model is increased by reasonable division and expansion of training datasets. The comparisons on real datasets show that the proposed model with side-information can effectively ameliorate the user’s interest predicted by the model without side-information, and improve the accuracy of rating prediction, which has a certain practicality.

Key words: auto-encoder, collaborative filtering, side-information, recommender system, rating prediction

中图分类号: