东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (10): 1390-1393.DOI: -

• 论著 • 上一篇    下一篇

改进的高阶收敛FastICA算法

季策;胡祥楠;朱丽春;张志伟;   

  1. 东北大学信息科学与工程学院;中国科学院国家天文台;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(10878017)

Improved higher order convergent FastICA algorithm

Ji, Ce (1); Hu, Xiang-Nan (1); Zhu, Li-Chun (2); Zhang, Zhi-Wei (2)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (2) National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Ji, C.
  • About author:-
  • Supported by:
    -

摘要: 高阶收敛的FastICA具有形式简单、收敛速度快的特点,但其对初始值的选择比较敏感,若初始值选择不当很容易影响收敛的效果,甚至造成不收敛的结果.针对这一问题,采用最速下降法对三阶和五阶收敛的FastICA算法进行改进.首先,应用最速下降法求出初值,再用高阶收敛的FastICA算法求出最优解.语音信号的分离实验表明:改进后的算法对混合信号进行了较好的分离,并且有效地克服了初值敏感性的问题.

关键词: 独立分量分析, 牛顿迭代法, FastICA, 最速下降法, 初值敏感性

Abstract: High order FastICA algorithms have the advantages of simple form and fast convergence rate. However, they are sensitive to their initial values affecting convergence effect and even resulting in inconvergence if the initial values are not chosen appropriately. To solve the problem, the FastICA algorithms of the third and fifth order convergence were improved with the steepest descent method. First, the initial values were calculated with the steepest descent method. Then, the optimal solution was calculated with the high order convergence FastICA algorithm. Speech signal separation experiments showed that the improved algorithm can separate mixed signal and overcome the initial value sensitivity problems effectively.

中图分类号: