Corresponding author: YANG Dong, E-mail: yangdong850901@126.com
作为一类特殊的切换系统,随机跳跃系统能够描述更加广泛的动力学系统,例如制造系统[1]、通讯系统[2]和电力系统[3]等,在过去的几十年里取得了许多有意义的成果[4, 5].在随机跳跃系统的控制与综合问题中,转移概率决定了系统性能,通常假设转移概率是完全已知的;事实上,精确获取转移概率是非常困难的.最近,转移概率部分未知的随机跳跃系统的控制问题引起了广泛关注[5, 6].
现有的许多结果都是在执行器完全可操作的前提下给出的,实际上,执行器故障是经常遇到的问题,如何设计控制器使闭环系统无论部件是否出现故障都能保持系统期望的性能具有更大的意义.一般的线性和非线性系统,可靠控制问题已经获得了大量成果[7, 8, 9].现将可靠控制的镇定性结果推广到转移概率部分未知的随机跳跃系统中.
本文研究了一类带有执行器故障的随机跳跃系统的可靠控制问题,其中要求此类系统的转移概率是部分未知的.首先,给出了保证此类系统随机稳定的充分条件;然后,提出了此类系统考虑执行器故障时的可靠控制问题;最后数值仿真算例说明了所得结果的有效性.
1 系统描述与准备工作考虑定义在完备概率空间( Ω,F,P )上的随机跳跃系统:
设计的控制器形式为
定义1 [10] 对所有初始状态 x0∈ R n和初始模态r0∈ L ,有下面不等式成立:
那么随机跳跃系统(1)( u f(t)=0)是随机稳定的.
定义2 对所有初始状态 x0∈ R n和初始模态r0∈ L ,如果存在形如式(4)的控制器使得闭环系统(5)是随机稳定的,那么随机跳跃系统(1)是随机镇定的.
引理1 [11] 给定适当维数的实矩阵 M,Σ,N,且Σ T Σ≤I ,则对任意的正常数ε>0,有下面不等式成立:
定理1 转移概率部分未知的随机跳跃系统(1) ( u f(t)=0)是随机稳定的,如果存在对称正定矩阵 P i∈ R n×n,对称矩阵 Q i∈ R n×n,使得∀i∈ L 有式(11)~(13)成立:
证明 选取Lyapunov函数
定理证毕.
定理2 带有执行器故障的转移概率部分未知的随机跳跃系统(1)是随机镇定的,如果存在正常数εi>0,对称正定矩阵 P i∈ R n×n,对称矩阵 Q i∈ R n×n,使得∀i∈ L 有下面的条件成立:
证明 将定理1中的 A i用Ai代替,得到系统(1)随机镇定的充分条件,由式(11)可得
定理得证.
定理3 带有执行器故障的转移概率部分未知的随机跳跃系统(1)的可靠控制问题有解,如果存在一个正常数εi>0,对称正定矩阵 X i∈ R n×n,对称矩阵 R i∈ R n×n和矩阵 Y i∈ R m×n,使得∀i∈ L 有下面LMIs成立:
证明 很明显,如果系统满足式(20)~(22),则系统(1)是随机镇定的.注意到式(22)等价于
接下来分两种情况进行处理.
情况1 i∈ L ki,利用Schur补引理可知式(31)等价于式(26).
情况2 i∈ Luk 1,利用Schur补引理可知式(31)等价于式(27).
另外,式(21)和式(22)分别等价于式(28)和式(29).
证明完毕.
3 数值算例考虑二维四模态的随机跳跃系统,其参数为
求解定理3中的LMIs(26)~(29),得控制器增益如下:
从仿真图形中可以看到,存在执行器故障时所设计的控制器仍然可以保证系统(1)的随机镇定性,从而证明了设计结果的有效性.
4 结 语本文针对一类带有执行器故障的随机跳跃系统研究了其可靠控制问题,主要工作是把此类系统要求转移概率完全已知的条件放宽到了转移概率部分未知的更一般情形,具有更小的保守性.数值仿真算例说明了所得结果的有效性.
[1] | Shen L J,Buscher U.Solving the serial batching problem in job shop manufacturing systems[J].European Journal of Operational Research,2012,221(1):14-26.(1) |
[2] | Athans M.Command and control theory:a challenge to control science[J].IEEE Transactions on Automatic Control,1987,32(4):286-293.(1) |
[3] | Assawinchaichote W,Nguang S K,Shi P.Robust H∞ fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps:an LMI approach[J].Information Sciences,2007,177(7):1699-1714.(1) |
[4] | Wu H N,Cai K Y.Robust fuzzy control for uncertain discrete-time nonlinear Markovian jump systems without mode observations[J].Information Sciences,2007,177(6):1509-1522.(1) |
[5] | Zhang L X,Boukas E K.Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J].Automatica,2009,45(2):463-468.(2) |
[6] | Luan X L,Liu F,Shi P.Finite-time filtering for non-linear stochastic systems with partially known transition jump rates[J].IET Control Theory & Applications, 2010,4(5):735-745.(1) |
[7] | Yang G H,Wang J L,Soh Y C.Reliable H∞ design for linear system[J].Automatica, 2001,37(5):717-725.(1) |
[8] | Veillette R J,Medanic J V,Perkins W R.Design of reliable control system[J].IEEE Transactions on Automatic Control,1992,37(3):770-784.(1) |
[9] | Fu Y S,Tian Z H,Shi S J.Reliable H∞ state feedback control of uncertain nonlinear systems[J].Journal of Applied Sciences,2000,18(3):280-282.(1) |
[10] | El-Kbir B.Stochastic switching systems:analysis and design[M].Berlin:Birkhauser,2005:23-24.(1) |
[11] | Wang Y Y,Xie L H,Souza C E.Robust control of a class of uncertain nonlinear systems[J].Systems and Control Letters,1992,19(2):139-149.(1) |
[12] | Mao X R.Stability of stochastic deferential equations with Markovian switching[J].Stochastic Processes and Their Application, 1999,79(1):45-67.(1) |