东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (11): 1564-1570.DOI: 10.12068/j.issn.1005-3026.2023.11.007

• 信息与控制 • 上一篇    下一篇

改进的复合高斯型杂波模拟方法

成怡1,2, 银培文1   

  1. (1. 天津工业大学 控制科学与工程学院, 天津300387; 2.天津工业大学 天津市电气装备智能控制重点实验室, 天津300387)
  • 发布日期:2023-12-05
  • 通讯作者: 成怡
  • 作者简介:成怡(1979-),女,天津人,天津工业大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(61973234).

Improved Compound Gaussian Clutter Simulation Method

CHENG Yi1,2, YIN Pei-wen1   

  1. 1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China; 2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China.
  • Published:2023-12-05
  • Contact: YIN Pei-wen
  • About author:-
  • Supported by:
    -

摘要: 零记忆非线性变换(ZMNL)方法和球不变随机过程(SIRP)是模拟复合高斯型杂波的主要方法.针对基于传统ZMNL与SIRP方法中的K与Pareto分布雷达杂波仿真中存在的形状参数只能为整数或半整数的问题,通过增加支路利用Gamma函数第二参数的可加性,提出将Gamma函数的概率密度函数(PDF)转化为二阶非线性常微分方程,并求解产生任意参数下的Gamma分布随机数,从而将复合高斯型分布杂波的形状参数扩展到一般实数.仿真实验表明:提出的方法不仅适用于非整数或非半整数形状参数值的杂波仿真,而且进一步提高了拟合度.

关键词: 杂波模拟;Gamma分布;复合高斯分布;零记忆非线性变换;球不变随机过程

Abstract: Zero memory nonlinearity(ZMNL)and spherically invariant random process(SIRP)are two mainly used methods in compound Gaussian clutter simulations. Aiming at the problem that the shape parameters in the K and Pareto distributed radar clutter simulation based on the traditional ZMNL and SIRP methods can only be integer or semi-integer, by adding branches and using the additivity of the second parameter of Gamma function, it is proposed to transform the probability density function(PDF)of the Gamma function into second-order nonlinear ordinary differential equation. Furthermore, it is solved to generate Gamma distributed random numbers under arbitrary parameters, and the shape parameters of compound Gaussian distribution clutter is extended to general real numbers. The simulation experiments show that the proposed method is not only suitable for clutter simulation with non-integer or non-semi-integer shape parameter values, but also further improves the fitting degree.

Key words: clutter simulation; Gamma distribution; compound Gaussian distributed; zero memory nonlinearity(ZMNL); spherically invariant random process(SIRP)

中图分类号: