东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (11): 1621-1630.DOI: 10.12068/j.issn.1005-3026.2023.11.015

• 资源与土木工程 • 上一篇    下一篇

基于机器学习的泥水盾构关键掘进参数预测与优化

刘克奇1, 杜佃春2, 赵文1, 丁万涛3   

  1. (1. 东北大学 资源与土木工程学院, 辽宁 沈阳110819; 2. 东南大学 土木工程学院, 江苏 南京211189; 3. 山东大学 齐鲁交通学院, 山东 济南250061)
  • 发布日期:2023-12-05
  • 通讯作者: 刘克奇
  • 作者简介:`刘克奇(1991-),男,陕西商洛人,东北大学讲师,博士; 赵文(1962-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N2201017); 山东省自然科学基金资助项目(ZR2021ME135).

Machine Learning-Based Prediction and Optimization of Slurry Shield’s Key Tunneling Parameters

LIU Ke-qi1, DU Dian-chun2, ZHAO Wen1, DING Wan-tao3   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 2. School of Civil Engineering, Southeast University, Nanjing 211189, China; 3. School of Qilu Transportation, Shandong University, Jinan 250061, China.
  • Published:2023-12-05
  • Contact: ZHAO Wen
  • About author:-
  • Supported by:
    -

摘要: 探明泥水盾构施工过程中关键掘进参数(如刀盘转速、主推进力、刀盘扭矩等)对开挖面泥浆支护效果及盾构能耗的影响规律,是保障盾构快速掘进和降低盾构机械损耗的重要前提.本研究依托济南穿黄隧道东线盾构项目掘进参数集计算各掘进环的场切深指数(FPI)和扭矩切深指数(TPI);采用掘进比能将掘进参数集划分为优配数据集以及待优化数据集,并分别基于支持向量回归和人工神经网络方法建立了关键掘进参数的预测模型.结果表明:盾构场切深指数和扭矩切深指数可有效描述掘进地层的同一性.盾构掘进比能呈对数正态分布特征,可有效表征盾构掘进工作状态并评估盾构各项掘进参数的配置水平.同一地层中当盾构掘进能耗水平波动较大时宜采用人工神经网络预测模型对刀盘转速以及盾构主推进力进行优化.

关键词: 泥水盾构;掘进参数;掘进比能;机器学习;预测模型

Abstract: Investigating the impact of key tunneling parameters, such as cutter-head rotation speed, main thrust, and cutter-head torque, on the slurry support effect at the tunnel face and energy consumption during slurry shield construction is a crucial requirement to ensure efficient and rapid tunneling while minimizing the shield’s mechanical losses. The tunneling parameters from the shield tunneling project of Jinan East Line Tunnel across Yellow River were used to calculate the field penetration index(FPI)and the torque penetration index(TPI)for each tunneling ring. The tunneling parameter set was divided into the optimal data set and the data set to be optimized using the excavation specific energy, and the prediction models of key tunneling parameters were established based on the support vector regression and artificial neural network methods respectively. The results showed that FPI and TPI can effectively describe the homogeneity of the excavated strata. The shield’s excavation specific energy is log-normally distributed, which can be used to describe the shield’s excavation working condition and assess the configuration level among the slurry shield’s tunneling parameters. The artificial neural network prediction model is suitable for optimizing the cutter-head rotation speed and the shield’s jacking force when the energy consumption level of shield tunneling fluctuates significantly in the homogeneous strata.

Key words: slurry shield; tunneling parameter; excavation specific energy; machine learning; prediction model

中图分类号: