东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (1): 10-17.DOI: 10.12068/j.issn.1005-3026.2024.01.002

• 信息与控制 • 上一篇    下一篇

一种基于图神经网络的社会化推荐算法

吕艳霞, 郝帅, 乔广通, 邢烨   

  1. 东北大学秦皇岛分校 计算机与通信工程学院,河北 秦皇岛 066004
  • 收稿日期:2022-07-22 出版日期:2024-01-15 发布日期:2024-04-02
  • 作者简介:吕艳霞(1982-),女,河北秦皇岛人,东北大学秦皇岛分校副教授.
  • 基金资助:
    国家自然科学基金资助项目(61901099);河北省自然科学基金资助项目(F2021501020)

A Social Recommendation Algorithm Based on Graph Neural Network

Yan-xia LYU, Shuai HAO, Guang-tong QIAO, Ye XING   

  1. School of Computer & Communication Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China. Corresponding author: LYU Yan-xia,E-mail: lyx@neuq. edu. cn
  • Received:2022-07-22 Online:2024-01-15 Published:2024-04-02

摘要:

现有的社会化推荐算法大多着眼于用户购买或点击等单一的交互行为,并未同时考虑收藏、浏览等多种不同的交互行为.而且当前的社会化推荐算法重点只关注推荐的准确性,忽略了推荐结果的可解释性.针对以上问题,提出了一种基于图神经网络的社会化推荐算法SRGN,将用户的社交关系和物品间客观存在的语义联系以特定的方式注入到算法架构中,并且利用消息传递的方式实现交互的多行为联合编码,从而提升推荐的准确性.此外,设计了可解释模块为推荐结果提供推荐的理由.在两个真实数据集上与其他8种算法进行对比实验,结果表明提出的算法在推荐性能和用户友好性上具有明显的优势.

关键词: 推荐系统, 社会化推荐, 图神经网络, 可解释推荐, 个性化推荐

Abstract:

Most existing social recommendation algorithms focus on the user’s single interaction such as purchase or click, but do not consider different interactions such as collection and browsing simultaneously. Moreover, current social recommendation algorithms only focus on the accuracy of recommendation, ignoring the interpretability of recommendation results. To solve the above problems, a social recommendation algorithm SRGN is proposed based on graph neural network, which injects the social relationships of users and the objectively existing semantic connections between items into the algorithm architecture in a specific way, and jointly encodes the interactive multi-behavior through message transmission, so as to improve the accuracy of recommendation. In addition, an explainable module is designed to provide reasons for the recommendation results. Compared with other eight algorithms on two real datasets, the results show that the proposed algorithm has obvious advantages in recommendation performance and user friendliness.

Key words: recommendation system, social recommendation, graph neural network, explainable recommendation, personalized recommendation

中图分类号: