东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (3): 372-381.DOI: 10.12068/j.issn.1005-3026.2024.03.009
收稿日期:
2022-10-28
出版日期:
2024-03-15
发布日期:
2024-05-17
通讯作者:
许江波
作者简介:
许江波(1985-),男,河南林州人,长安大学副教授,博士生导师.
基金资助:
Jiang-bo XU1(), Guo-zheng SUN1, Xin-min HOU1, Yang-lin YU2
Received:
2022-10-28
Online:
2024-03-15
Published:
2024-05-17
Contact:
Jiang-bo XU
About author:
XU Jiang-bo, E-mail: xujiangbo@yeah.net摘要:
为了研究不同长径比和倾角下应变率对层状千枚岩动力特性的影响,选用4种倾角(
中图分类号:
许江波, 孙国政, 侯鑫敏, 余洋林. 多因素耦合效应对层状千枚岩动力特性的影响[J]. 东北大学学报(自然科学版), 2024, 45(3): 372-381.
Jiang-bo XU, Guo-zheng SUN, Xin-min HOU, Yang-lin YU. Influence of Multi-factor Coupling Effect on Dynamic Characteristics of Layered Phyllite[J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 372-381.
倾角/(°) | 试样编号 | L/mm | L/D | p/MPa | σ0/MPa | εmax×103 | |
---|---|---|---|---|---|---|---|
0 | QJ00-25-01 | 25 | 0.52 | 0.150 | 125.97 | 6.04 | 92 |
QJ00-25-02 | 25 | 0.52 | 0.175 | 136.11 | 9.85 | 112 | |
QJ00-25-03 | 25 | 0.52 | 0.200 | 142.14 | 10.78 | 125 | |
QJ00-25-04 | 25 | 0.52 | 0.225 | 148.17 | 12.37 | 136 | |
QJ00-25-05 | 25 | 0.52 | 0.250 | 154.93 | 16.30 | 151 | |
QJ00-50-01 | 50 | 1.01 | 0.150 | 92.71 | 7.86 | 69 | |
QJ00-50-02 | 50 | 1.01 | 0.175 | 120.73 | 9.57 | 86 | |
QJ00-50-03 | 50 | 1.02 | 0.200 | 150.14 | 10.81 | 105 | |
QJ00-50-04 | 50 | 1.01 | 0.225 | 170.52 | 12.63 | 113 | |
QJ00-50-05 | 50 | 0.99 | 0.250 | 184.29 | 13.42 | 127 | |
30 | QJ30-25-01 | 25 | 0.51 | 0.150 | 117.68 | 5.16 | 92 |
QJ30-25-02 | 25 | 0.51 | 0.175 | 123.96 | 6.96 | 112 | |
QJ30-25-03 | 25 | 0.51 | 0.200 | 128.01 | 8.59 | 125 | |
QJ30-25-04 | 25 | 0.51 | 0.225 | 134.98 | 9.84 | 136 | |
QJ30-25-05 | 25 | 0.51 | 0.250 | 137.79 | 11.44 | 151 | |
QJ30-50-01 | 50 | 1.03 | 0.150 | 92.71 | 7.02 | 69 | |
QJ30-50-02 | 50 | 1.03 | 0.175 | 117.39 | 8.28 | 86 | |
QJ30-50-03 | 50 | 1.03 | 0.200 | 124.11 | 9.08 | 105 | |
QJ30-50-04 | 50 | 1.03 | 0.225 | 135.98 | 9.88 | 113 | |
QJ30-50-05 | 50 | 1.03 | 0.250 | 156.54 | 10.93 | 127 | |
60 | QJ60-25-01 | 25 | 0.51 | 0.150 | 89.33 | 5.14 | 92 |
QJ60-25-02 | 25 | 0.50 | 0.175 | 106.24 | 6.95 | 112 | |
QJ60-25-03 | 25 | 0.50 | 0.200 | 112.39 | 9.29 | 125 | |
QJ60-25-04 | 25 | 0.50 | 0.225 | 116.39 | 9.49 | 136 | |
QJ60-25-05 | 25 | 0.50 | 0.250 | 122.98 | 10.58 | 151 | |
QJ60-50-01 | 50 | 1.02 | 0.150 | 58.39 | 5.16 | 69 | |
QJ60-50-02 | 50 | 1.02 | 0.175 | 81.46 | 6.60 | 86 | |
QJ60-50-03 | 50 | 1.03 | 0.200 | 99.55 | 8.63 | 105 | |
QJ60-50-04 | 50 | 1.01 | 0.225 | 106.59 | 9.65 | 113 | |
QJ60-50-05 | 50 | 1.01 | 0.250 | 127.37 | 10.61 | 127 | |
90 | QJ90-25-01 | 25 | 0.52 | 0.150 | 125.54 | 8.10 | 92 |
QJ90-25-02 | 25 | 0.52 | 0.175 | 131.77 | 10.95 | 112 | |
QJ90-25-03 | 25 | 0.52 | 0.200 | 138.17 | 11.56 | 125 | |
QJ90-25-04 | 25 | 0.53 | 0.225 | 142.60 | 12.73 | 136 | |
QJ90-25-05 | 25 | 0.53 | 0.250 | 150.96 | 13.09 | 151 |
表1 4种层理倾角2种不同长度层状千枚岩试样参数
Table 1 Parameters of layered phyllite samples with 4 bedding inclination angles and 2 different lengths
倾角/(°) | 试样编号 | L/mm | L/D | p/MPa | σ0/MPa | εmax×103 | |
---|---|---|---|---|---|---|---|
0 | QJ00-25-01 | 25 | 0.52 | 0.150 | 125.97 | 6.04 | 92 |
QJ00-25-02 | 25 | 0.52 | 0.175 | 136.11 | 9.85 | 112 | |
QJ00-25-03 | 25 | 0.52 | 0.200 | 142.14 | 10.78 | 125 | |
QJ00-25-04 | 25 | 0.52 | 0.225 | 148.17 | 12.37 | 136 | |
QJ00-25-05 | 25 | 0.52 | 0.250 | 154.93 | 16.30 | 151 | |
QJ00-50-01 | 50 | 1.01 | 0.150 | 92.71 | 7.86 | 69 | |
QJ00-50-02 | 50 | 1.01 | 0.175 | 120.73 | 9.57 | 86 | |
QJ00-50-03 | 50 | 1.02 | 0.200 | 150.14 | 10.81 | 105 | |
QJ00-50-04 | 50 | 1.01 | 0.225 | 170.52 | 12.63 | 113 | |
QJ00-50-05 | 50 | 0.99 | 0.250 | 184.29 | 13.42 | 127 | |
30 | QJ30-25-01 | 25 | 0.51 | 0.150 | 117.68 | 5.16 | 92 |
QJ30-25-02 | 25 | 0.51 | 0.175 | 123.96 | 6.96 | 112 | |
QJ30-25-03 | 25 | 0.51 | 0.200 | 128.01 | 8.59 | 125 | |
QJ30-25-04 | 25 | 0.51 | 0.225 | 134.98 | 9.84 | 136 | |
QJ30-25-05 | 25 | 0.51 | 0.250 | 137.79 | 11.44 | 151 | |
QJ30-50-01 | 50 | 1.03 | 0.150 | 92.71 | 7.02 | 69 | |
QJ30-50-02 | 50 | 1.03 | 0.175 | 117.39 | 8.28 | 86 | |
QJ30-50-03 | 50 | 1.03 | 0.200 | 124.11 | 9.08 | 105 | |
QJ30-50-04 | 50 | 1.03 | 0.225 | 135.98 | 9.88 | 113 | |
QJ30-50-05 | 50 | 1.03 | 0.250 | 156.54 | 10.93 | 127 | |
60 | QJ60-25-01 | 25 | 0.51 | 0.150 | 89.33 | 5.14 | 92 |
QJ60-25-02 | 25 | 0.50 | 0.175 | 106.24 | 6.95 | 112 | |
QJ60-25-03 | 25 | 0.50 | 0.200 | 112.39 | 9.29 | 125 | |
QJ60-25-04 | 25 | 0.50 | 0.225 | 116.39 | 9.49 | 136 | |
QJ60-25-05 | 25 | 0.50 | 0.250 | 122.98 | 10.58 | 151 | |
QJ60-50-01 | 50 | 1.02 | 0.150 | 58.39 | 5.16 | 69 | |
QJ60-50-02 | 50 | 1.02 | 0.175 | 81.46 | 6.60 | 86 | |
QJ60-50-03 | 50 | 1.03 | 0.200 | 99.55 | 8.63 | 105 | |
QJ60-50-04 | 50 | 1.01 | 0.225 | 106.59 | 9.65 | 113 | |
QJ60-50-05 | 50 | 1.01 | 0.250 | 127.37 | 10.61 | 127 | |
90 | QJ90-25-01 | 25 | 0.52 | 0.150 | 125.54 | 8.10 | 92 |
QJ90-25-02 | 25 | 0.52 | 0.175 | 131.77 | 10.95 | 112 | |
QJ90-25-03 | 25 | 0.52 | 0.200 | 138.17 | 11.56 | 125 | |
QJ90-25-04 | 25 | 0.53 | 0.225 | 142.60 | 12.73 | 136 | |
QJ90-25-05 | 25 | 0.53 | 0.250 | 150.96 | 13.09 | 151 |
冲击气压 p/MPa | 子弹速度 v/(m·s-1) | 应变率/s-1 | |
---|---|---|---|
L=25 mm | L=50 mm | ||
0.150 | 6.8 | 92 | 69 |
0.175 | 7.4 | 112 | 86 |
0.200 | 8.5 | 125 | 105 |
0.225 | 9.2 | 136 | 113 |
0.250 | 9.3 | 151 | 127 |
表2 冲击气压与子弹速度和试样应变率关系
Table 2 Relationship between impact air pressure and bullet velocity and strain rate of sample
冲击气压 p/MPa | 子弹速度 v/(m·s-1) | 应变率/s-1 | |
---|---|---|---|
L=25 mm | L=50 mm | ||
0.150 | 6.8 | 92 | 69 |
0.175 | 7.4 | 112 | 86 |
0.200 | 8.5 | 125 | 105 |
0.225 | 9.2 | 136 | 113 |
0.250 | 9.3 | 151 | 127 |
图7 4种倾角下层状千枚岩动态抗压强度与应变率关系
Fig.7 Relationship between dynamic compressive strength and strain rate of layered phyllite under four dip angles (a)—α=0°; (b)—α=30°; (c)—α=60°; (d)—α=90°.
1 | Zhang Q B, Zhao J.A review of dynamic experimental techniques and mechanical behaviour of rock materials[J].Rock Mechanics and Rock Engineering,2014,47(4):1411-1478. |
2 | Hao Y, Hao H.Numerical investigation of the dynamic compressive behavior of rock materials at high strain rate[J].Rock Mechanics and Rock Engineering,2013,46(2):373-388. |
3 | Li J C, Rong L F, Li H B,et al.An SHPB test study on stress wave energy attenuation in jointed rock masses[J].Rock Mechanics and Rock Engineering,2019,52(2):403-420. |
4 | Kao S M, Zhao G M, Xu W S,et al.Experimental study of the association between sandstone size effect and strain rate effect[J].Journal of Mechanical Science and Technology,2020,34(9):3597-3608. |
5 | Zhong K, Zhao W S, Qin C K,et al.Experimental study on the mechanical behavior and failure characteristics of layered coal at medium strain rates[J].Energies,2021,14(20):1-15. |
6 | Mishra S, Meena H, Parashar V,et al.High strain rate response of rocks under dynamic loading using split Hopkinson pressure bar[J].Geotechnical and Geological Engineering,2018,36(1):531-549. |
7 | Mishra S, Chakraborty T, Matsagar V,et al.High strain‐rate characterization of Deccan trap rocks using SHPB device[J].Journal of Materials in Civil Engineering,2018,30(5): 04018059. |
8 | Si X F, Gong F Q, Li X B,et al.Dynamic Mohr‐Coulomb and Hoek‐Brown strength criteria of sandstone at high strain rates[J].International Journal of Rock Mechanics and Mining Sciences,2019,115:48-59. |
9 | Qi C Z, Wang M Y, Wang Z F,et al.Study on the coupling effect of sample size and strain rate on rock compressive strength[J].Rock Mechanics and Rock Engineering,2023,56(7):5103-5114. |
10 | Zhou J, Zhao G M, Meng X R,et al.Experimental investigation of the size effect of rock under impact load[J].Minerals,2022,13(1):13010043. |
11 | 许江波,费东阳,孙浩珲,等.节理千枚岩能量传递与动力学特性[J].东北大学学报(自然科学版),2021,42(7):986-995. |
Xu Jiang‐bo, Fei Dong‐yang, Sun Hao‐hui,et al.Energy transfer and dynamic characteristics of jointed phyllite[J].Journal of Northeastern University (Natural Science),2021,42(7):986-995. | |
12 | Qi C Z, Wang M Y, Qian Q H.Strain‐rate effects on the strength and fragmentation size of rocks[J].International Journal of Impact Engineering,2009,36(12):1355-1364. |
13 | Zou C J, Wong L N Y.Size and geometry effects on the mechanical properties of Carrara marble under dynamic loadings[J].Rock Mechanics and Rock Engineering,2016,49(5):1695-1708. |
14 | Xie X K, Li J C, Zheng Y L.Experimental study on dynamic mechanical and failure behavior of a jointed rock mass[J].International Journal of Rock Mechanics and Mining Sciences,2023,168:105415. |
15 | Xu J H, Kang Y, Wang Z F,et al.Dynamic mechanical behavior of granite under the effects of strain rate and temperature[J].International Journal of Geomechanics,2020,20(2): 04019177. |
16 | 王礼立.应力波基础[M].2版.北京:国防工业出版社,2005. |
Wang Li‐li.Foundation of stress waves[M].2nd ed.Beijing:National Defense Industry Press,2005. | |
17 | 刘红岩,邓正定,王新生,等.节理岩体动态破坏的SHPB相似材料试验研究[J].岩土力学,2014,35(3):659-665. |
Liu Hong‐yan, Deng Zheng‐ding, Wang Xin‐sheng,et al.Similar material test study of dynamic failure of jointed rock mass with SHPB[J].Rock and Soil Mechanics,2014,35(3):659-665. | |
18 | 武仁杰,李海波,李晓锋,等.不同冲击载荷下层状千枚岩压缩力学特性研究[J].岩石力学与工程学报,2019,38(sup2):3304-3312. |
Wu Ren‐jie, Li Hai‐bo, Li Xiao‐feng,et al.Dynamic mechanical properties of layered phyllite subject to different impact loads[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(sup2):3304-3312. | |
19 | 刘丹,黄曼,洪陈杰,等.基于代表性取样的节理岩体抗压强度尺寸效应试验研究[J].岩石力学与工程学报,2021,40(4):766-776. |
Liu Dan, Huang Man, Hong Chen‐jie,et al.Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(4):766-776. | |
20 | Li X F, Li H B, Zhang Q B,et al.Dynamic fragmentation of rock material:characteristic size,fragment distribution and pulverization law[J].Engineering Fracture Mechanics,2018,199:739-759. |
21 | 平琦,张号,苏海鹏.不同长度石灰岩动态压缩力学性质试验研究[J].岩石力学与工程学报,2018,37(sup2):3891-3897. |
Ping Qi, Zhang Hao, Su Hai‐peng.Study on dynamic compression mechanical properties of limestone with different lengths[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(sup2):3891-3897. |
[1] | 高永涛, 朱强, 吴顺川, 王勇兵. 基于D-S证据理论的岩爆预测方法研究[J]. 东北大学学报(自然科学版), 2024, 45(2): 244-251. |
[2] | 纪洪广, 陈东升, 苏晓波, 权道路. 基于三轴加卸载试验的花岗岩弹性模量变异与能量演化分析[J]. 东北大学学报(自然科学版), 2023, 44(3): 415-423. |
[3] | 郝博, 代浩, 吕超. 入水角度对高速射弹入水过程的影响[J]. 东北大学学报(自然科学版), 2022, 43(2): 221-227. |
[4] | 彭志雄, 曾亚武. 基于裂纹扩展作用下的岩石损伤力学模型[J]. 东北大学学报(自然科学版), 2022, 43(12): 1784-1791. |
[5] | 许江波, 费东阳, 孙浩珲, 崔易仑. 节理千枚岩能量传递与动力学特性[J]. 东北大学学报(自然科学版), 2021, 42(7): 986-995. |
[6] | 王述红, 尹宏, 张泽, 魏崴. 考虑三维形貌参数的结构面峰值剪切强度预测新模型[J]. 东北大学学报(自然科学版), 2021, 42(11): 1609-1617. |
[7] | 徐忠印, 刘善军, 吴立新, 车德福. 天空冷背景下受力岩石微波辐射特征实验研究[J]. 东北大学学报:自然科学版, 2020, 41(8): 1180-1187. |
[8] | 张镭, 赵鑫. 金属链式无级变速器动力特性的研究[J]. 东北大学学报:自然科学版, 2020, 41(3): 361-366. |
[9] | 李嘉祥, 王彪, 孙健, 王述红. 输电塔螺栓节点滞回特性数值模拟研究[J]. 东北大学学报:自然科学版, 2020, 41(11): 1633-1639. |
[10] | 王述红, 张雨浓, 黄立夫, 肖福坤. 岩体中孔与裂纹贯通破坏模式图形判别法[J]. 东北大学学报:自然科学版, 2018, 39(5): 705-709. |
[11] | 毛文飞, 吴立新, 刘善军, 徐忠印. 干、湿沙层对岩石受力微波辐射影响的实验对比[J]. 东北大学学报:自然科学版, 2018, 39(5): 710-715. |
[12] | 李树蔚, 赵文, 国志雨. 筒仓-贮料-地基相互作用系统地震响应研究[J]. 东北大学学报:自然科学版, 2018, 39(12): 1764-1768. |
[13] | 杨伟, 陶明, 李夕兵, 李国平. 高应变率下灰砂比对全尾胶结充填体力学性能影响[J]. 东北大学学报:自然科学版, 2017, 38(11): 1659-1663. |
[14] | 乔丽苹, 李旗, 王者超, 杨磊. 岩壁变形条件下结构面法向变形特征[J]. 东北大学学报:自然科学版, 2016, 37(10): 1479-1484. |
[15] | 宋腾蛟, 陈剑平, 张文, 宋盛渊. 基于萤火虫算法的岩体结构面优势产状聚类分析[J]. 东北大学学报:自然科学版, 2015, 36(2): 284-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||