1 |
Lin Q, Chen X, Zheng Y M,et al.Multiaxial isothermal and thermomechanical fatigue behavior of 316LN stainless steel[J].International Journal of Pressure Vessels and Piping,2022,197:104-633.
|
2 |
Tan J B, Wu X Q, Han E H,et al.Strain‑rate dependent fatigue behavior of 316LN stainless steel in high‐temperature water[J].Journal of Nuclear Materials,2017,489:33-41.
|
3 |
American Society Mechanical Engineers. ASME boiler and pressure vessel code section III [S].New York:[s.n],2004.
|
4 |
Li B B, Zheng Y M, Zhao J W,et al.Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550 ℃[J].Materials Science & Engineering:A,2021,818:141411.
|
5 |
Hong C, Chen T, Li Z H,et al.Uniaxial ratcheting behavior and molecular dynamics simulation evaluation of 316LN stainless steel[J].Materials Science & Engineering:A,2022,849:143535.
|
6 |
Kang G Z, Bruhns O T, Sai K.Cyclic polycrystalline visco‑plastic model for ratchetting of 316L stainless steel[J].Computational Materials Science,2011,50(4):1399-1405.
|
7 |
郭宁.高锰钢塑性变形机制的晶体塑性建模研究及应用[D].北京:北京科技大学,2018.
|
|
Guo Ning.Crystal plasticity modeling of plastic deformation mechanism for high manganese steel and its application[D].Beijing:University of Science and Technology Beijing,2018.
|
8 |
Samal M K.Simulation of material stress‑strain curve and creep deformation response of nickel based superalloys using crystal plasticity based finite element models[J].Transactions of the Indian Institute of Metals,2016,69(4):949-960.
|
9 |
Feather W G, Lim H, Knezevic M.A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures[J].Computational Mechanics,2021,67:33-55.
|
10 |
韩小寒.含粗大晶粒的316LN不锈钢微区变形不均匀性的实验与模拟研究[D].上海:上海交通大学,2019.
|
|
Han Xiao‑han.Study of experiment and simulation on deformation heterogeneity in microregion of 316LN stainless steel with coarse grains[D].Shanghai:Shanghai Jiao Tong University,2019.
|
11 |
Ahmadzadeh G R, Varvani‑Farahani A.Ratcheting assessment of materials based on the modified Armstrong‑Frederick hardening rule at various uniaxial stress levels[J].Fatigue & Fracture of Engineering Materials & Structures,2013,36(12):1232-1245.
|
12 |
于敦吉.奥氏体不锈钢循环塑性的微观机理和宏观本构描述[D].天津:天津大学,2014.
|
|
Yu Dun‑ji.A study of micro‑mechanisms and macro‐constitutive modeling of the cyclic plasticity of austenitic stainless steels[D].Tianjin:Tianjin University,2014.
|
13 |
Kalidindi S R.Modeling anisotropic strain hardening and deformation textures in low stacking fault energy FCC metals[J].International Journal of Plasticity,2001,17(6):837-860.
|
14 |
Zhou D W, Wang X W, Wang R Z,et al.An extended crystal plasticity model to simulate the deformation behaviors of hybrid stress‑strain controlled creep‑fatigue interaction loading[J].International Journal of Fatigue,2022,156:106680.
|
15 |
司良英,邓关宇,吕程,等.基于Voronoi图的晶体塑性有限元多晶几何建模[J].材料与冶金学报,2009,8(3):193-197,216.
|
|
Si Liang‑ying, Deng Guan‑yu, Cheng Lyu,et al.Polycrystal geometry modeling of crystal plasticity finite element method with voronoi diagram[J].Journal of Materials and Metallurgy,2009,8(3):193-197,216.
|
16 |
张旭,王旻嘉,康国政,等.基于晶体塑性有限元的多晶铜力学行为研究[J].北京理工大学学报,2014,34(sup1):86-89.
|
|
Zhang Xu, Wang Min‑jia, Kang Guo‑zheng,et al.Mechanical behavior of polycrystal copper based on crystal plasticity finite element method[J].Transactions of Beijing Institute of Technology,2014,34(sup1):86-89.
|
17 |
罗娟.基于晶体塑性理论的多晶循环本构模型及其有限元实现[D].成都:西南交通大学,2014.
|
|
Luo Juan.Crystal plasticity based polycrystalline cyclic constitutive model and its finite element implementation[D].Chengdu:Southwest Jiaotong University,2014.
|
18 |
Armstrong P J, Frederick C O.A mathematical representation of the multiaxial Bauschinger effect[J].Materials at High Temperature,2007,24(1):1-26.
|