东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 127-133.DOI: 10.12068/j.issn.1005-3026.2025.20230214
• 资源与土木工程 • 上一篇
陈猛, 于航, 王瑜婷, 张通
收稿日期:
2023-07-23
出版日期:
2025-01-15
发布日期:
2025-03-25
作者简介:
陈 猛(1981—),男,辽宁开原人,东北大学教授,博士生导师.
基金资助:
Meng CHEN, Hang YU, Yu-ting WANG, Tong ZHANG
Received:
2023-07-23
Online:
2025-01-15
Published:
2025-03-25
摘要:
为探寻回收轮胎聚合物纤维(RTPF)混凝土的冲击压缩性能与破碎后碎块尺寸分布规律的关系,利用直径100 mm的分离式霍普金森压杆对不同RTPF体积分数(0,0.05%,0.1%,0.2%和0.4%)的混凝土进行冲击压缩试验.结果表明:应变率在38.2~122.2 s-1时,不同掺量RTPF混凝土的分形维数范围为1.422~2.401;分形维数随应变率增加而增大,具有应变率效应;分形维数随RTPF掺量增加呈现先减小后增大的趋势,RTPF体积分数为0.1%时混凝土的分形维数最小;不同应变率下RTPF混凝土的动态抗压强度及耗散能均随分形维数的增加而增大;相同分形维数下,RTPF体积分数为0.1%时纤维与基体协同作用效果最佳,混凝土的动态抗压强度和耗散能提升幅度最大.利用分形理论建立RTPF混凝土的宏观损伤与冲击压缩性能的关系,可以确定混凝土中RTPF的最优掺量.
中图分类号:
陈猛, 于航, 王瑜婷, 张通. 基于分形理论的RTPF混凝土冲击压缩性能[J]. 东北大学学报(自然科学版), 2025, 46(1): 127-133.
Meng CHEN, Hang YU, Yu-ting WANG, Tong ZHANG. Impact Compressive Properties of RTPF Reinforced Concrete Based on Fractal Theory[J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 127-133.
长度/mm | 直径/ | 密度/(kg·m-3) | 弹性模量/GPa |
---|---|---|---|
8.7±4.1 | 21.1±2.5 | 1 160 | 3.21 |
表1 RTPF物理及力学性能
Table 1 Physical and mechanical properties of RTPF
长度/mm | 直径/ | 密度/(kg·m-3) | 弹性模量/GPa |
---|---|---|---|
8.7±4.1 | 21.1±2.5 | 1 160 | 3.21 |
试件编号 | 水泥 | 粗骨料 | 细骨料 | 水 | 减水剂 | RTPF |
---|---|---|---|---|---|---|
R0 | 472 | 1 144 | 616 | 218 | 2.36 | 0 |
R0.05 | 472 | 1 144 | 616 | 218 | 2.36 | 0.6 |
R0.1 | 472 | 1 144 | 616 | 218 | 2.36 | 1.2 |
R0.2 | 472 | 1 144 | 616 | 218 | 2.36 | 2.4 |
R0.4 | 472 | 1 144 | 616 | 218 | 2.36 | 4.8 |
表2 RTPF混凝土配合比 (reinforced concrete kg/m3)
Table 2 Proportions of mixture of RTPF
试件编号 | 水泥 | 粗骨料 | 细骨料 | 水 | 减水剂 | RTPF |
---|---|---|---|---|---|---|
R0 | 472 | 1 144 | 616 | 218 | 2.36 | 0 |
R0.05 | 472 | 1 144 | 616 | 218 | 2.36 | 0.6 |
R0.1 | 472 | 1 144 | 616 | 218 | 2.36 | 1.2 |
R0.2 | 472 | 1 144 | 616 | 218 | 2.36 | 2.4 |
R0.4 | 472 | 1 144 | 616 | 218 | 2.36 | 4.8 |
图4 不同掺量RTPF混凝土试件破碎块度分布(a)—R0; (b)—R0.05; (c)—R0.1; (d)—R0.2; (e)—R0.4.
Fig.4 Fragment size distributions of concrete specimens reinforced by different RTPF contents
图5 不同掺量RTPF混凝土的ln [M(x)/M]-lnx(a)—R0; (b)—R0.05; (c)—R0.1; (d)—R0.2; (e)—R0.4.
Fig.5 The ln [M(x)/M]-lnx curves of concrete reinforced by different RTPF contents
试件编号 | 拟合方程 | R2 |
---|---|---|
R0 | f=19.42Db+23.42 | 0.992 |
R0.05 | f=15.10Db+39.08 | 0.948 |
R0.1 | f=20.24Db+33.50 | 0.923 |
R0.2 | f=16.52Db+29.97 | 0.986 |
R0.4 | f=13.34Db+28.07 | 0.957 |
表4 动态抗压强度拟合方程 (strength)
Table 4 Fitting equation for dynamic compressive
试件编号 | 拟合方程 | R2 |
---|---|---|
R0 | f=19.42Db+23.42 | 0.992 |
R0.05 | f=15.10Db+39.08 | 0.948 |
R0.1 | f=20.24Db+33.50 | 0.923 |
R0.2 | f=16.52Db+29.97 | 0.986 |
R0.4 | f=13.34Db+28.07 | 0.957 |
试件编号 | 拟合方程 | R2 |
---|---|---|
R0 | WA =373.13Db-377.12 | 0.957 |
R0.05 | WA =317.95Db-198.73 | 0.995 |
R0.1 | WA =321.44Db-129.26 | 0.999 |
R0.2 | WA =399.40Db-396.75 | 0.973 |
R0.4 | WA =392.01Db-540.42 | 0.959 |
表5 耗散能拟合方程
Table 5 Fitting equation for dissipated energy
试件编号 | 拟合方程 | R2 |
---|---|---|
R0 | WA =373.13Db-377.12 | 0.957 |
R0.05 | WA =317.95Db-198.73 | 0.995 |
R0.1 | WA =321.44Db-129.26 | 0.999 |
R0.2 | WA =399.40Db-396.75 | 0.973 |
R0.4 | WA =392.01Db-540.42 | 0.959 |
1 | Ossa A, Gaxiola A.Effect of water on the triaxial behavior under dynamic loading of asphalt concrete used in impervious barriers[J].Construction and Building Materials,2019,208:333-342. |
2 | Li N, Jin Z Q, Long G C,et al.Impact resistance of steel fiber‑reinforced self‑compacting concrete (SCC) at high strain rates[J].Journal of Building Engineering,2021,38:102212. |
3 | Sun X W, Zhao K, Li Y C,et al.A study of strain‑rate effect and fiber reinforcement effect on dynamic behavior of steel fiber‑reinforced concrete[J].Construction and Building Materials,2018,158:657-669. |
4 | Baričević A, Rukavina M J, Pezer M,et al.Influence of recycled tire polymer fibers on concrete properties[J].Cement and Concrete Composites,2018,91:29-41. |
5 | Chen M, Chen W, Zhong H,et al.Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete[J].Cement and Concrete Composites,2019,98:95-112. |
6 | Chen M, Zhong H, Zhang M Z.Flexural fatigue behaviour of recycled tyre polymer fibre reinforced concrete[J].Cement and Concrete Composites,2020,105:103441. |
7 | Lan X L, Zeng X H, Zhu H S,et al.Experimental investigation on fractal characteristics of pores in air‑entrained concrete at low atmospheric pressure[J].Cement and Concrete Composites,2022,130:104509. |
8 | Mandelbrot B B, Passoja D E, Paullay A J.Fractal character of fracture surfaces of metals[J].Nature,1984,308(19):721-722. |
9 | Xia W, Xu J Y, Nie L X.Research on the mechanical performance of carbon nanofiber reinforced concrete under impact load based on fractal theory[J].Crystals,2021,11(4):387. |
10 | 赵昕,徐世烺,李庆华.高温后超高韧性水泥基复合材料冲击破碎分形特征分析[J].土木工程学报,2019,52(2):44-55. |
Zhao Xin, Xu Shi‑lang, Li Qing‑hua.Fractal characteristics of fire‑damaged ultra high toughness cementitious composite after impact loading[J].China Civil Engineering Journal,2019,52(2):44-55. | |
11 | 许金余,刘石.大理岩冲击加载试验碎块的分形特征分析[J].岩土力学,2012,33(11):3225-3229. |
Xu Jin‑yu, Liu Shi.Research on fractal characteristics of marble fragments subjected to impact loading[J].Rock and Soil Mechanics,2012,33(11):3225-3229. | |
12 | 任韦波,许金余,刘远飞,等.高温后玄武岩纤维混凝土冲击破碎分形特征[J].振动与冲击,2014,33(10):167-171,188. |
Ren Wei‑bo, Xu Jin‑yu, Liu Yuan‑fei,et al.Fractal characteristics of fragments of basalt fiber reinforced concrete after elevated temperatures under impact loading[J].Journal of Vibration and Shock,2014,33(10):167-171,188. | |
13 | Onuaguluchi O, Banthia N.Value‑added reuse of scrap tire polymeric fibers in cement‑based structural applications[J].Journal of Cleaner Production,2019,231:543-555. |
14 | Li Y, Zhang Y, Yang E H,et al.Effects of geometry and fraction of polypropylene fibers on permeability of ultra‑high performance concrete after heat exposure[J].Cement and Concrete Research,2019,116:168-178. |
15 | Zhou Z L, Li X B, Zuo Y J,et al.Fractal characteristics of rock fragmentation at strain rate of 100~102 s-1 [J].Journal of Central South University of Technology,2006,13(3):290-294. |
16 | Zhang H, Wang L, Zheng K,et al.Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J].Construction and Building Materials,2018,187:584-595. |
17 | Wu Z M, Shi C J, He W,et al.Static and dynamic compressive properties of ultra‑high performance concrete (UHPC) with hybrid steel fiber reinforcements[J].Cement and Concrete Composites,2017,79:148-157. |
18 | Hild F.On characteristic parameters involved in dynamic fragmentation processes[J].Mechanics of Materials,2015,80:340-350. |
19 | Baricevic A, Pezer M, Rukavina M J,et al.Effect of polymer fibers recycled from waste tires on properties of wet‑sprayed concrete[J].Construction and Building Materials,2018,176:135-144. |
20 | Chen M, Sun Z H, Tu W L,et al.Behaviour of recycled tyre polymer fibre reinforced concrete at elevated temperatures[J].Cement and Concrete Composites,2021,124:104257. |
21 | Sukontasukkul P, Nimityongskul P, Mindess S.Effect of loading rate on damage of concrete[J].Cement and Concrete Research,2004,34(11):2127-2134. |
22 | Wang S S, Zhang M H, Quek S T.Mechanical behavior of fiber‑reinforced high‑strength concrete subjected to high strain‑rate compressive loading[J].Construction and Building Materials,2012,31:1-11. |
23 | Kotsovos M D.Effect of testing techniques on the post‑ultimate behaviour of concrete in compression[J].Materiaux et Construction,1983,16(1):3-12. |
24 | Li Q M, Meng H.About the dynamic strength enhancement of concrete‑like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures,2003,40(2):343-360. |
25 | Liu P F, Liu J, Bi J.Experimental and theoretical study of dynamic mechanical behavior of concrete subjected to triaxial confining and impact loads[J].Journal of Building Engineering,2023,64:105715. |
26 | Zhang H, Wang L, Bai L Y,et al.Research on the impact response and model of hybrid basalt‑macro synthetic polypropylene fiber reinforced concrete[J].Construction and Building Materials,2019,204:303-316. |
[1] | 陈猛, 洪宇. RTP-PVA混杂纤维的工程水泥基复合材料干缩性能试验研究[J]. 东北大学学报(自然科学版), 2024, 45(3): 407-414. |
[2] | 陈猛, 王瑜婷, 曹宇新. 回收轮胎聚合物纤维混凝土干缩性能研究[J]. 东北大学学报(自然科学版), 2023, 44(1): 123-129. |
[3] | 陈猛, 王瑜婷, 陶云霄, 王浩. 基于分形理论研究RTSF混凝土冲击压缩性能[J]. 东北大学学报(自然科学版), 2022, 43(2): 266-273. |
[4] | 姚云龙, 修世超, 孙聪, 洪远. 基于40Cr高温动态力学性能的磨削表面动态再结晶行为[J]. 东北大学学报(自然科学版), 2021, 42(8): 1120-1126. |
[5] | 陈猛, 刘阳波, 陶云霄, 王浩. 回收轮胎聚合物纤维混凝土性能试验研究[J]. 东北大学学报:自然科学版, 2020, 41(6): 870-874. |
[6] | 张健新, 张标, 戎贤, 丁传林. 钢纤维增强高强钢筋混凝土梁柱节点抗震性能试验研究[J]. 东北大学学报:自然科学版, 2020, 41(10): 1465-1475. |
[7] | 郑艳, 高爽. 基于自适应门限的分形维数语音端点检测[J]. 东北大学学报:自然科学版, 2020, 41(1): 7-11. |
[8] | 赵海, 李雄峰, 朱宏博, 王彬. 基于分形维数特征的肺结节形状建模[J]. 东北大学学报:自然科学版, 2018, 39(11): 1545-1551. |
[9] | 李艺, 董金霞, TAN Kiang Hwee. 长期荷载作用下SFRC梁承载能力极限状态可靠性分析[J]. 东北大学学报:自然科学版, 2017, 38(7): 1055-1059. |
[10] | 李艺, 张爽. 干湿循环作用下混杂纤维混凝土抗硫酸盐侵蚀性能[J]. 东北大学学报:自然科学版, 2016, 37(6): 895-899. |
[11] | 张锴锋,袁惠群,聂鹏. 基于广义维数与优化BP神经网络的刀具磨损量预测[J]. 东北大学学报(自然科学版), 2013, 34(9): 1292-1295. |
[12] | 张璐,赵文,李艺. 纤维混凝土核废料贮存容器可靠度分析[J]. 东北大学学报(自然科学版), 2013, 34(7): 1045-1048. |
[13] | 曾鹏鑫;么健石;朱琳琳;徐心和;. 基于分形的人造目标与自然物体区别[J]. 东北大学学报(自然科学版), 2006, 27(3): 260-263. |
[14] | 李平;张廷安;汪秉宏;豆志河;. 灰度阈值对图像分形特征参数提取的分析[J]. 东北大学学报(自然科学版), 2006, 27(1): 57-60. |
[15] | 回丽;曹志韬;谢里阳;何雪浤. 钛合金焊缝金属表面疲劳短裂纹的分形研究[J]. 东北大学学报(自然科学版), 2004, 25(8): 790-792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||