东北大学学报(自然科学版) ›› 2010, Vol. 31 ›› Issue (7): 1011-1014+1018.DOI: -

• 论著 • 上一篇    下一篇

无限多孔平面MSD的应力强度因子计算

赵晋芳;谢里阳;刘建中;赵群;   

  1. 东北大学机械工程与自动化学院;北京航空材料研究院;沈阳工程学院机械系;
  • 收稿日期:2013-06-20 修回日期:2013-06-20 出版日期:2010-07-15 发布日期:2013-06-20
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家重大基础研究计划项目(2006CB605000);;

Calculation of stress intensity factor of MSD plate with multiple holes as an infinite continuum

Zhao, Jin-Fang (1); Xie, Li-Yang (1); Liu, Jian-Zhong (2); Zhao, Qun (3)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China; (2) Beijing Institute of Aeronautical Materials, Beijing 100095, China; (3) Department of Mechanical Engineering, Shenyang Institute of Engineering, Shenyang 110136, China
  • Received:2013-06-20 Revised:2013-06-20 Online:2010-07-15 Published:2013-06-20
  • Contact: Zhao, J.-F.
  • About author:-
  • Supported by:
    -

摘要: 阐明了复变应力函数方法及其近似迭加法的基本原理,并将其应用于无限多孔平面MSD应力强度因子的求解上.利用此种方法计算了无限平面上共线双孔、三孔和四孔对称裂纹情况的数值算例,通过与有限元结果的比较可知,该方法的计算结果精确、可靠,而且计算过程相对简单,易操作.这种利用解析函数性质求解出复变应力函数,并结合其近似迭加法计算应力强度因子的方法,能够很好地应用于无限平面上任意分布的多孔MSD结构,值得在工程断裂问题中得到推广

关键词: 多位置损伤板, 无限连续体, 多孔, 复变应力函数, 近似迭加法, 应力强度因子, 解析函数

Abstract: The complex variable stress function and its approximate superposition principle were clarified to solve the stress intensity factors (SIF) of MSD plate with multiple holes, which was regarded as an infinite continuum. This method was used to calculate some numerical examples of MSD plates on which the symmetrical cracks occurred arising from 2, 3 and 4 collinearly circular holes. Comparing with the FEA, the calculated results by this method are more accurate and reliable with easy calculating operation. Taking advantages of analytic function to solve the complex variable stress function and then calculate the stress intensity factor via the relevant approximate superposition, this method can be well applied to the MSD plate structure with multiple holes distributed randomly. So, it is worthy to popularize for the fracture problems in practical projects.

中图分类号: