东北大学学报(自然科学版) ›› 2008, Vol. 29 ›› Issue (9): 1366-1368.DOI: -

• 论著 • 上一篇    

具有随机扰动的非线性人口方程解的存在惟一性

孙涛;姜秀芹;段晓东;   

  1. 东北大学理学院;大连民族学院计算机学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2008-09-15 发布日期:2013-06-22
  • 通讯作者: Sun, T.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60573124);;

Existence and uniqueness of solutions to a class of nonlinear equations of population dynamics with random migration perturbation

Sun, Tao (1); Jiang, Xiu-Qin (1); Duan, Xiao-Dong (2)   

  1. (1) School of Sciences, Northeastern University, Shenyang 110004, China; (2) School of Computer, Dalian Nationalities University, Dalian 116600, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2008-09-15 Published:2013-06-22
  • Contact: Sun, T.
  • About author:-
  • Supported by:
    -

摘要: 利用非线性泛函分析理论研究了一类具有随机移民扰动的非线性m增生人口发展方程,把移民率看做是对人口发展模型的一种随机干扰,在移民率满足在任意有限时间内有上界的条件下,应用Banach不动点定理证明了此类发展方程在确定型和随机型两种情况下积分解的存在惟一性.改进的应用Schauder不动点定理和Sadovskii不动点定理证明此类发展方程随机积分解的存在性结论.

关键词: 压缩算子, m增生算子, 人口动力学, 随机发展方程, 随机积分解

Abstract: The existence and uniqueness of random integral solutions are proved to a class of m-accretive random evolution equations of population dynamics with random migration perturbation in arbitrary finite interval of time by using Banach's fixed point theorem of the nonlinear functional theory, which is the improvement of the results obtained by both Schauder's and Sadovskii's fixed point theorems.

中图分类号: