东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (12): 1145-1148.DOI: -

• 论著 • 上一篇    下一篇

油藏预测中的贝叶斯网络融合方法

徐野;赵海;苏威积;张文波;   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2005-12-15 发布日期:2013-06-24
  • 通讯作者: Xu, Y.
  • 作者简介:-
  • 基金资助:
    国家高技术研究发展计划项目(2001AA415320)

Fusion of Bayesian networks to forecast oil reservoir distribution

Xu, Ye (1); Zhao, Hai (1); Su, Wei-Ji (1); Zhang, Wen-Bo (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2005-12-15 Published:2013-06-24
  • Contact: Xu, Y.
  • About author:-
  • Supported by:
    -

摘要: 针对油藏分布预测的问题,提出了一个贝叶斯网络融合模型并设计了相应的算法.数据预处理时,为消除对地质、测井、钻井等多个专业和领域的数据分类所产生的误差,采用了数据聚类分析中k-平均算法,并针对专业领域数据的特点对算法进行了扩充与优化.最后,融合中心将贝叶斯网络输出的客观概率知识与领域专家知识进行主观融合,得出结论.实验表明,这一方法解决了油藏问题研究中传统方法(单一神经元网络模型方法)设计困难,训练周期长、速度慢,分类结果不精确等缺点,可以满足油藏分布预测的要求.

关键词: 贝叶斯网络, 信息融合, 聚类分析, 神经网络, 油藏预测

Abstract: A Bayesian fusion model is put foreword with a corresponding algorithm designed to forecast the oil reservoir distribution A clustering analysis algorithm, k-mean algorithm, is expanded and optimized to avoid errors due to data classifying in various professional fields, such as geology, logging and shaft drilling. Eventually, a conclusion is drawn the way the fusion center processes the output from Bayesian network as objective probability knowledge in combination with the subjective knowledge provided by experts in different fields. Experimental results showed that the method has successfully solved many problems which the conventional single-neuron network-modeling method was hard to resolve, such as difficult to design, long training cycles, low forecasting speed and inexact classifying results, thus meeting the requirements for such a forecast.

中图分类号: