东北大学学报(自然科学版) ›› 2004, Vol. 25 ›› Issue (9): 825-828.DOI: -

• 论著 • 上一篇    下一篇

一种耗散型混沌神经元及其延时分类

姚羽;高福祥;于戈   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院 辽宁沈阳 110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2004-09-15 发布日期:2013-06-25
  • 通讯作者: Yao, Y.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60173051);;国家教育部博士点基金资助项目(20030145029);;教育部高等学校优秀青年教师教学和科研奖励基金资助项目;;国家高技术研究发展计划项目(2003AA414310)·

Dissipative chaotic neuron and its time-delay classification

Yao, Yu (1); Gao, Fu-Xiang (1); Yu, Ge (1)   

  1. (1) Sch. of Info. Sci. and Eng., Northeastern Univ., Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2004-09-15 Published:2013-06-25
  • Contact: Yao, Y.
  • About author:-
  • Supported by:
    -

摘要: 讨论了离散的、耗散型非线性神经元模型动力学·数值模拟表明模型中带有非零衰减系数时,自抑制神经元呈现出复杂的动力学模式,其中包括倍周期分叉通往混沌·利用混沌神经元对BP网络结果进行后处理,组成BP/CNN混合神经网络,利用其倒分岔特性实现延时分类·构建的BP/CNN对典型的具有延时特性行为的SYNflooding滥用入侵进行检测,结果表明该混合神经网络具有灵活的延时分类能力,扩展了BP神经网络的计算能力,提供了一种新的分类处理方法,可以推广到识别其他延时分类的事件中·

关键词: 耗散型神经元, 混沌神经网络, 延时分类, SYNflooding, 滥用入侵检测

Abstract: The dynamics of a discrete and dissipative nonlinear model neuron is discussed. Numerical simulations demonstrate that the self-inhibitory units with non-zero decay rates exhibit a complex dynamics including period doubling routes to chaos. A BP/CNN hybrid neural network is constructed using the chaotic neuron in the neural network to conduct an after-processing for the output from BP network, with the reverse bifurcation of the chaotic neuron used to implement time-delay classification. The BP/CNN network thus constructed can detect the SYN flooding misuse intrusion featured with typical time-delay behavior. The result shows that these types of hybrid neural network have a capability for flexible time-delay classification so as to extend the computational capability of BP neural network and provide a new type of classifying method. The proposed neural network can be generalized to other time-delay classification.

中图分类号: