东北大学学报(自然科学版) ›› 2012, Vol. 33 ›› Issue (12): 1685-1689.DOI: -

• 论著 • 上一篇    下一篇

基于CVA-ICA与CSM的故障诊断方法

杨英华;李召;陈永禄;陈晓波;   

  1. 东北大学信息科学与工程学院;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N100404018)

Fault diagnosis based on CVA-ICA and CSM

Yang, Ying-Hua (1); Li, Zhao (1); Chen, Yong-Lu (1); Chen, Xiao-Bo (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Yang, Y.-H.
  • About author:-
  • Supported by:
    -

摘要: 针对工业过程的故障诊断问题,提出了一种基于规范变量分析与独立元分析(CVA-ICA)的动态过程故障检测方法,在此基础上,结合连续字符串匹配(CSM)算法,提出了一种改进的基于完备故障库的故障诊断算法.该算法首先用CVA方法求出观测数据的规范变量,然后对规范变量进行ICA分解,最后运用CSM算法对ICA分解后的数据进行故障诊断.通过对TE过程的仿真研究,验证了所提出的改进算法的可行性与有效性.

关键词: 规范变量分析, 独立元分析, 连续字符串匹配, 故障诊断, TE过程

Abstract: In order to handle the problem of fault diagnosis for industrial processes, an improved fault detection method was proposed based on canonical variable analysis (CVA) and independent component analysis (ICA). At the same time, combined with continuous string matching (CSM), a new fault diagnosis method based on the library of complete faults was proposed. First, the CVA algorithm was used to calculate the canonical variable of the data, and then, the ICA algorithm was used to decompose the canonical variable. Finally, the CSM algorithm was used to diagnose the faults. A case study of Tennessee Eastman (TE) process showed that the proposed algorithm is feasible and efficient.

中图分类号: