东北大学学报(自然科学版) ›› 2012, Vol. 33 ›› Issue (8): 1079-1083.DOI: -

• 论著 • 上一篇    下一篇

基于局部自适应约束的图像恢复模型

于晓升;吴成东;陈东岳;贾同;   

  1. 东北大学信息科学与工程学院;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60874103);;

An image restoration model based on adaptive local constraints

Yu, Xiao-Sheng (1); Wu, Cheng-Dong (1); Chen, Dong-Yue (1); Jia, Tong (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Yu, X.-S.
  • About author:-
  • Supported by:
    -

摘要: 针对基于自适应Lp范数的图像恢复(adaptiveLpnormbased image restoration,ALPIR)模型在恢复图像时引入"阶梯"效应的问题,提出了一个基于局部自适应约束的图像恢复模型."阶梯"效应的产生与ALPIR模型的Lp范数自适应方案性能密切相关;在新模型中,依据人类视觉感知特性,采用图像方向信息测度和局部方差表征图像的边缘特征,利用可见度函数构建了一个新的自适应方案确定Lp范数.实验结果表明,新模型在恢复图像的同时很好地保持了图像的边缘细节,有效地抑制了"阶梯"效应,综合性能优于ALPIR模型.

关键词: Lp范数, 图像恢复, 阶梯效应, 方向信息测度, 局部方差

Abstract: To address the limitations of the adaptive Lp norm-based image restoration (ALPIR) model, an image restoration model based on adaptive local constraints is formulated. Though the ALPIR model can restore images successfully, the staircase effect appears in the flat regions of the restored images, which is closely associated with the poor scheme of the Lp norm of the ALPIR model. Given the deficiency, a new scheme is proposed according to the perceptive characteristic of the human visual system. This scheme has the same form as the visibility function, and applies the orientation information measure and local variance to the detection of edges. The proposed model is applied to image denoising and deblurring, and experimental results demonstrate that it outperforms the ALPIR model, i. e., the edge details of an image are preserved when the image is restored and the staircase effect is depressed by using the model.

中图分类号: