东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (4): 551-556.DOI: 10.12068/j.issn.1005-3026.2017.04.020

• 机械工程 • 上一篇    下一篇

基于道路工况分析的HEV控制策略优化方法

连静, 范悟明, 李琳辉, 袁鲁山   

  1. (大连理工大学 汽车工程学院, 辽宁 大连116024)
  • 收稿日期:2015-12-04 修回日期:2015-12-04 出版日期:2017-04-15 发布日期:2017-04-11
  • 通讯作者: 连静
  • 作者简介:连静(1981-),女,吉林公主岭人,大连理工大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(61473057); 中央高校基本科研业务费专项资金资助项目(DUT15LK13).

Control Strategy Optimization Method Based on Driving Cycle Recognition for HEV

LIAN Jing, FAN Wu-ming, LI Lin-hui, YUAN Lu-shan   

  1. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China.
  • Received:2015-12-04 Revised:2015-12-04 Online:2017-04-15 Published:2017-04-11
  • Contact: LI Lin-hui
  • About author:-
  • Supported by:
    -

摘要: 以某并联式混动公交车为研究对象,建立了四种典型工况模型,采用蚁群算法优化了最小等效燃油消耗控制策略中四种工况的充放电等效因子;分析了路面坡度与电池荷电状态(state of charge, SOC)目标值域调整之间的对应关系,设计了相应坡度自适应模块;提出了基于道路工况分析的混合动力汽车(hybrid electric vehicle, HEV)控制策略优化方法.典型工况下的仿真对比分析表明,该方法具有良好的工况适应能力,燃油经济性明显优于几类典型HEV控制策略.

关键词: 混合动力汽车, 工况识别, 蚁群优化, SOC目标值域, 控制策略

Abstract: Taking a parallel hybrid bus as research object, four kinds of typical working condition models were established, and the ant colony optimization algorithm was used to optimize the charge and discharge equivalent factor for each working condition in minimal equivalent fuel consumption control strategy. The relation between road gradient and adjustment of battery SOC target range was analyzed, and the corresponding gradient adaptive module was designed. A control strategy optimization method was proposed based on driving cycle recognition for HEV. The results of simulation and comparison analysis under typical working conditions showed that the method has very well driving condition adaptability, and its fuel economy is significantly higher than that of other several typical HEV control strategies.

Key words: HEV(hybrid electric vehicle), driving cycle recognition, ant colony optimization, SOC target range, control strategy

中图分类号: