东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (6): 828-833.DOI: 10.12068/j.issn.1005-3026.2017.06.014

• 机械工程 • 上一篇    下一篇

磨矿过程控制中专家操作人员脑电特征分析

张驰1, 卢绍文2, 王宏2,3, 王宏1*   

  1. (1. 东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2. 东北大学 流程工业综合自动化国家重点实验室, 辽宁 沈阳110819; 3. 曼彻斯特大学 自动化中心, 英国 曼彻斯特M60 1QD)
  • 收稿日期:2015-01-03 修回日期:2015-01-03 出版日期:2017-06-15 发布日期:2017-06-11
  • 通讯作者: 张驰
  • 作者简介:张驰(1987-),男,辽宁新民人,东北大学博士研究生; 王宏(1960-),男,甘肃庆阳人,东北大学和曼彻斯特大学教授,博士生导师,中组部第一批“千人计划”入选者; 王宏(1960-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    辽宁省创新团队资助项目(LT2014006); 流程工业综合自动化国家重点实验室开放课题(PAL-N201304).

EEG Feature Analysis of Expert Operators in Grinding Process Control

ZHANG Chi1, LU Shao-wen2, WANG Hong2,3, WANG Hong1*   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China; 3. Control Systems Centre, The University of Manchester, Manchester M60 1QD, UK.
  • Received:2015-01-03 Revised:2015-01-03 Online:2017-06-15 Published:2017-06-11
  • Contact: WANG Hong*
  • About author:-
  • Supported by:
    -

摘要: 面向选矿生产系统的优化和智能升级,为进一步保证产品的质量和产量,针对磨矿过程中操作人员行为因素的评定和量化问题,提出一种基于脑电信号(EEG)特征的实时分析方法.首先采用小波分解的方法提取大脑不同脑区的δ,θ,α和β波节律.然后通过小波各尺度的能量序列、分布计算不同脑区EEG的小波熵,根据小波熵的熵值比较确定待分析的脑区.根据小波时频分析的结果确定谱特征 (α+β)/(δ+θ+α+β),最后采用B样条拟合及滑动窗,进行实时评定.结果表明,提出的量化指标可以在一定程度上反映操作输出的粒度曲线的变化趋势,能够较为客观地评定操作人员的行为因素.

关键词: 磨矿过程, 脑电信号, 小波熵, 时频分析, B样条曲线

Abstract: In the context of systematic optimization and intelligent upgrade of the mineral production, the assessment and quantification of the operators’ behavioral factors need to be investigated to further enhance productivity and quality of the products. A real-time analysis method based on the electroencephalography (EEG) characteristics was presented in grinding process. To begin with, the δ, θ, α, and β rhythms in different brain regions were extracted using wavelet decomposition. Then the wavelet entropy can be obtained by calculating the energy sequence distribution of different wavelet coefficient vectors. According to the comparison of the entropy values, the specific brain region was selected. Through wavelet time-frequency analysis, (α+β)/(δ+θ+α+β) was determined as the spectral characteristic. Finally, the results of real-time analysis using B-spline curve and sliding window showed that the physiological indicators can reflect the trend of the granularity curves and assess the operators’ influence factors objectively to some extent.

Key words: grinding process, EEG, wavelet entropy, time-frequency analysis, B-spline curve

中图分类号: