东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (1): 102-107.DOI: 10.12068/j.issn.1005-3026.2018.01.021

• 机械工程 • 上一篇    下一篇

基于颈腰部肌电及脑电信号的疲劳驾驶检测

王琳1,2, 化成城1, 姜鑫1, 王宏1   

  1. (1. 东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2. 沈阳工程学院 机械学院, 辽宁 沈阳110136)
  • 收稿日期:2016-07-11 修回日期:2016-07-11 出版日期:2018-01-15 发布日期:2018-01-31
  • 通讯作者: 王琳
  • 作者简介:王琳(1980-),女,辽宁沈阳人,东北大学博士研究生; 王宏(1960-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(NSFC 51405073).

Investigation on Driver Fatigue Testing Based on the Combination of Cervical-Lumbar EMG and EEG

WANG Lin1, 2, HUA Cheng-cheng1, JIANG Xin1, WANG Hong1   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2. Department of Mechanical Engineering, Shenyang Institute of Engineering, Shenyang 110136, China.
  • Received:2016-07-11 Revised:2016-07-11 Online:2018-01-15 Published:2018-01-31
  • Contact: WANG Hong
  • About author:-
  • Supported by:
    -

摘要: 为了有效判别驾驶员的疲劳状态,结合生物力学分析提取了驾驶过程中的颈腰部肌电信号EMG和头部脑电信号EEG,并分析其特征参数在驾驶过程中的变化规律.结果表明:颈肌样本熵、颈肌复杂度、腰肌样本熵、腰肌复杂度、脑电样本熵、脑电复杂度这6个生理信号的特征参数值都随着驾驶时间的延长而逐渐降低,通过主成分分析可实现特征参数间的合理组合.基于多元回归理论,建立了能够有效预测疲劳驾驶的数学模型.状态验证结果表明,该模型对疲劳状态判别的正确率可达95%以上.

关键词: 疲劳驾驶, 肌电信号, 脑电信号, 生物力学, 特征参数

Abstract: In order to effectively test driver fatigue, the surface electromyography (EMG) and electroencephalogram (EEG) were collected in driving processes, and the characteristic parameters were extracted and analyzed combined with biomechanics. The experimental results indicated that the sample entropy (SampEn) and complexity of EMG and EEG gradually decrease with the driving time expends. These characteristic parameters can be reasonably combined by using the principal component analysis. Based on the multiple regression theory, the characteristic parameters at different positions of the body are reasonably combined, and a mathematical model to evaluate fatigued driving is built. The accuracy of the model is up to 95% by the state validation.

Key words: driver fatigue, electromyography (EMG), electroencephalogram (EEG), biomechanics, characteristic parameters

中图分类号: