东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (3): 316-320.DOI: 10.12068/j.issn.1005-3026.2018.03.003

• 信息与控制 • 上一篇    下一篇

基于块目标的频率步进连续波探地雷达压缩感知重建算法

佘黎煌, 王培人, 张石   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 收稿日期:2016-10-19 修回日期:2016-10-19 出版日期:2018-03-15 发布日期:2018-03-09
  • 通讯作者: 佘黎煌
  • 作者简介:冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.佘黎煌(1980-),男,福建莆田人,东北大学讲师,博士.
  • 基金资助:
    国家自然科学基金资助项目(51171041).中央高校基本科研业务费专项资金资助项目(N150403002).

Reconstruction Algorithm of Compressed Sensing for Stepped-Frequency Continuous Wave Ground Penetrating Radar Based on Block Objects

SHE Li-huang, WANG Pei-ren, ZHANG Shi   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2016-10-19 Revised:2016-10-19 Online:2018-03-15 Published:2018-03-09
  • Contact: SHE Li-huang
  • About author:-
  • Supported by:
    -

摘要: 压缩感知理论对于解决频率步进连续波探地雷达信号处理过程中存在的采样速率高、存储数据量大、信号处理时间长等问题具有重要意义. 针对雷达探测中块目标物体在探测区域不满足稀疏性的问题,提出一种适合块目标的压缩感知重构模型.利用某些稀疏正交基对块目标进行稀疏化处理使其满足稀疏性,将字典矩阵与稀疏矩阵结合形成适用于块目标物体的新观测矩阵,再通过压缩感知凸优化算法求解稀疏化系数,最后把该系数通过稀疏变换得到块目标的反射系数.通过实验仿真验证该方法的可行性,与未稀疏化处理的压缩感知重构模型相比具有更高的精度和分辨率.

关键词: 频率步进连续波探地雷达, 字典矩阵, 压缩感知, 正交基, 块目标

Abstract: Compressed sensing (CS) is of great significance to solving such problems as high sampling rate, huge storage pressure and long processing time in the process of stepped-frequency continuous wave ground penetrating radar (SFCW-GPR). Aiming at the problem that block objects can’t meet the sparseness in the detecting area, and using the orthogonal basis for sparse processing of block objects to satisfy the sparsity condition, a new observation matrix that was suitable for block objects was formed by combining the dictionary matrix and sparse matrix. The sparse coefficients were solved by using the compressed sensing convex optimization algorithm. Finally, the reflection coefficients of block objects were obtained through sparse transformation of the sparse coefficients. The simulation results showed that the proposed method is feasible and has higher accuracy and resolution ratio compared with the compressed sensing reconstruction model without sparsity.

Key words: stepped-frequency continuous wave ground penetrating radar, dictionary matrix, compressed sensing(CS), orthogonal basis, block object

中图分类号: