东北大学学报:自然科学版  2017, Vol. 38 Issue (4): 457-461  
0

引用本文 [复制中英文]

连莲, 高宪文, 齐文海. 一般不确定转移速率下Markov切换系统的弹性控制器[J]. 东北大学学报:自然科学版, 2017, 38(4): 457-461.
[复制中文]
LIAN Lian, GAO Xian-wen, QI Wen-hai. Resilient Controller for Markov Switching Systems Under Generally Uncertain Transition Rate[J]. Journal Of Northeastern University Nature Science, 2017, 38(4): 457-461. DOI: 10.3969/j.issn.1005-3026.2017.04.001.
[复制英文]

基金项目

国家自然科学基金资助项目 (61573088)

作者简介

连莲 (1981-),女,辽宁丹东人,东北大学博士研究生;
高宪文 (1955-),男,辽宁盘锦人,东北大学教授, 博士生导师。

文章历史

收稿日期:2016-03-30
一般不确定转移速率下Markov切换系统的弹性控制器
连莲, 高宪文, 齐文海    
东北大学 信息科学与工程学院,辽宁 沈阳 110819
摘要:研究了一类随机时滞Markov切换系统的弹性控制器设计问题.该系统的转移速率是一般不确定的,比完全已知速率和不完全已知速率更具有一般性.针对此类Markov切换系统, 充分考虑一般不确定转移速率矩阵中各元素之间的特性,通过构建一个较为新颖的模态依赖型Lyapunov-Krasovskii泛函,设计了弹性控制器以确保闭环系统随机稳定.并且,通过求解一组线性矩阵不等式得到控制器增益矩阵.最后,利用一个数值算例验证了所得结果的有效性.
关键词Markov切换系统    模态依赖    一般不确定转移速率    随机稳定    弹性控制器    
Resilient Controller for Markov Switching Systems Under Generally Uncertain Transition Rate
LIAN Lian, GAO Xian-wen, QI Wen-hai    
School of Information Science & Engineering, Northeastern University, Shenyang 110819, China
Corresponding author: LIAN Lian, E-mail: sophiababy0117@gmail.com
Abstract: The problem of resilient controller design for stochastic time-delayed Markov switching systems was investigated. Transition rate of the system is generally uncertain, which is more general than the completely known rate and the partly known rate. By full considering features between each element in the generally uncertain transition matrix, a mode-dependent Lyapunov-Krasovskii functional was established, and a resilient controller was designed to ensure that the closed-loop system was stochastically stable for the Markov switching systems. A set of linear matrix inequalities (LMIs) was solved to get controller gain matrix. Finally, a numerical example was given to demonstrate the effectiveness of the results.
Key Words: Markov switching systems    mode-dependent    generally uncertain transition rate    stochastic stability    resilient controller    

Markov切换系统作为一种特殊的切换系统,已被广泛研究,例如经济系统、网络控制系统、容错控制系统等都可以用Markov切换系统建模描述[1-4].转移速率 (关键性因素) 决定了Markov切换系统的性能.近些年,针对转移速率问题的研究,主要集中在转移速率完全已知,或者转移速率部分已知的情况[5-9],但由于控制系统的复杂性,获得准确的转移速率代价高昂并且几乎是不可能的.而一般不确定转移速率涵盖了转移速率部分未知和转移速率不确定两大内容,因此,此类Markov切换系统的研究更具有实际意义[10-13].

同时,由于随机扰动和时滞在各类动力系统中的客观存在,随机时滞微分方程作为实用意义很强的一类系统模型也被广泛研究[14].进而,随机时滞Markov切换系统也取得了许多有意义的成果[15-17].

控制器参数的微小摄动通常会大幅降低闭环系统的性能,但是这种摄动是不可避免的,因此,弹性控制器在工业过程中起到十分重要的作用,其设计问题引起了许多学者的关注[18-19].

目前,对于一般转移速率下随机时滞Markov切换系统的弹性控制的文献还很少见,本文针对这类系统,构造了模态依赖型的Lyapunov-Krasovskii泛函,结合自由权矩阵得到了保守性较低的闭环系统的随机稳定的充分条件.在此基础上,设计了弹性控制器以确保闭环系统的稳定性.最后,通过数值仿真验证了所得结果的有效性及优势.

1 系统描述

考虑如下随机时滞Markov切换系统:

(1)

式中:x(t)∈Rn是状态向量;u(t)∈Rm是控制输入;w(t) 是标准维纳过程;时变时滞τ(t) 满足0≤;初始函数φ(θ) 定义在区间[-τ, 0]上;gt为有限集S={1, 2, …, N}中取值的连续Markov过程.从t时刻模态itt时刻模态j的转移概率为

式中:为系统转移速率,并且当ij时满足

本文考虑一般不确定转移速率:

式中:πij为估计值;的误差并且分别满足

式中,πijλij是已知先验的.假设三模态的一般不确定转移速率矩阵为

其中,未知元素用“?”表示.对于,这里是已知的, {j:πij是未知的, jS}.如果Si≠∅,可以描述为.其中kmiS代表矩阵i行中序号为kmi的第m个已知元素.方便起见,定义矩阵中的符号为gt=i.

本文设计弹性状态反馈控制器为

(2)

式中:为不确定状态反馈增益,Ki是特定的状态反馈控制器增益,ΔKiRm×n(iS) 是控制器增益的摄动.本文考虑加性摄动:

式中:Hki, Mki是已知定常矩阵;Fki(t) 是参数不确定矩阵,且满足对于状态反馈控制器 (2),有闭环系统:

(3)

定义1 对于任意的初始模态g0和初始状态φ(θ),存在一个正的标量参数T(φ(θ), g0) 使得下式成立:

(4)

那么系统 (3) 是随机稳定的.

定义2 定义系统 (3) 的Lyapunov-Krasovskii泛函为V(x(t), i), 其无穷小算子为

引理1  给定任意实数ε以及方阵R,对于任意矩阵F,有

引理2给定适当维数矩阵DEF,并且FT(t)F(t)≤I, 那么,对于任意正标量ε

2 弹性状态反馈控制器设计

定理1 一般不确定转移速率下的闭环随机时滞Markov切换系统 (3) 在状态反馈控制器遭遇加性摄动时是随机稳定的,如果存在对称正定矩阵,对称矩阵Ri, V1i, V2iRn×n,非奇异矩阵LiRm×mFiRm×n,正常量ε′i使下列不等式成立:

(5)
(6)
(7)
(8)
(9)
(10)

式中:

这里状态反馈控制器增益矩阵为

(11)

证明对系统 (3), 构造Lyapunov-Krasovskii泛函:

(12)

式中:

(13)

首先,考虑Fki(t)=0时随机时滞Markov切换系统 (3) 的稳定性条件.由定义2得无穷小算子:

由于,因此,

根据引理1可得

(14)

同理可得

(15)
(16)

结合式 (12),式 (13) 及条件可得

式中:

显然,当.所以,

根据定义1可知,闭环系统 (3) 是随机稳定的.

其次, 考虑Fki(t)≠0的情况,即设计弹性状态反馈控制器 (2) 保证闭环系统 (3) 的随机稳定性.

,其中,ΔKi=HkiFki(t)Mki,可得

(17)

式中:

并利用Schur补引理可知,当条件 (5)~(10) 被满足时,根据定义1可知,一般不确定转移速率的闭环随机时滞Markov切换系统 (3) 是随机稳定的.定理1证明完毕.

注1  当Δπij=0时,闭环系统 (3) 退化为转移速率部分未知的情况.

注2  将式 (2) 中的Ki替换成K,问题就转化为求解模态独立控制器.

注3  式 (5) 中变量Li需要满足的LMI求解条件:

式中δi是足够小的正常量.那么相应LMI为

3 仿真算例

考虑如下四模态的随机Markov切换系统,系统参数如下:

系统的一般不确定转移速率矩阵为

令Δπijλij=|0.2×πij|,通过求解定理1,可得弹性控制器增益参数:

将此控制器应用于原系统,可得系统的状态轨迹如图 1所示.

图 1 状态轨迹 Fig.1 State trajectories

仿真结果表明,在所得弹性状态反馈控制器的作用下,算例给出的闭环系统状态x(t) 尽管在最初时刻表现为震荡,但是在7 s之内可以迅速收敛,达到稳定.

4 结论

本文针对具有一般不确定转移速率的随机时滞Markov切换系统,研究了模态依赖型的弹性控制器设计问题.首先,构建了适当的Lyapunov-Krasovskii泛函,在线性矩阵不等式的框架下,实现了弹性控制器的求解与证明.最后,利用数值仿真验证了所得结果的有效性.本文所研究的系统较转移速率不完全已知的情况更具有一般性,并且控制器和Lyapunov-Krasovskii均是模态依赖型,所得结果相对模态独立型具有较低的保守性.

参考文献
[1] Boukas E K. Stochastic switching systems:analysis and design[M]. Berlin: Birkhauser, 2005.
[2] Chen W H, Xu J X, Guan Z H. Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control, 2003, 48(12): 2270–2277. DOI:10.1109/TAC.2003.820165
[3] Mao X R. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Process and Their Applications, 1999, 79(1): 45–67. DOI:10.1016/S0304-4149(98)00070-2
[4] Fei Z Y, Gao H J, Shi P. New results on stabilization of Markovian jump systems with time delay[J]. Automatica, 2009, 45(10): 2300–2306. DOI:10.1016/j.automatica.2009.06.020
[5] Wu L G, Shi P, Gao H J. State estimation and sliding-mode control of Markovian jump singular systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5): 1213–1219. DOI:10.1109/TAC.2010.2042234
[6] Zhang L X, Boukas E K. Stability and stabilization for Markovian jump linear systems with partly unknown transition probabilities[J]. Automatica, 2009, 45(2): 463–468. DOI:10.1016/j.automatica.2008.08.010
[7] Wang Y, Sun Y, Zuo Z, et al. Robust H-infinity control of discrete-time Markovian jump systems in the presence of incomplete knowledge of transition probabilities and saturating actuator[J]. International Journal of Robust and Nonlinear Control, 2012, 22(15): 1753–1764. DOI:10.1002/rnc.v22.15
[8] Ding Y C, Zhu H, Zhong S M, et al. H-infinity filtering for stochastic systems with Markvian switching and partly unknown transition probabilities[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 559–583. DOI:10.1007/s00034-012-9462-6
[9] Zhao X D, Zeng Q S. Delay-dependent H-infinity performance analysis for Markovian jump systems with mode-dependent time varying delays and partially known transition rates[J]. International Journal of Control Automation and Systems, 2010, 8(2): 482–489. DOI:10.1007/s12555-010-0238-0
[10] Kao Y G, Xie J, Wang C H. Stabilization of singular Markovian jump systems with generally uncertain transition rates[J]. Applied Mathematics and Computation, 2014, 245(9): 243–254.
[11] Kao Y G, Wang C H, Xie J. New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates[J]. International Journal of Systems Science, 2015, 47(1): 1–11.
[12] Gao X W, Lian L, Qi W H. Finite-time dissipativity analysis and design for stochastic Markovian jump systems with generally uncertain transition rates and time-varying delay[J]. Transactions of the Institute of Measurement and Control, 2015. DOI:10.1177/0142331215620465
[13] Kao Y G, Xie J, Wang C H. Stabilisation of singular Markovian jump systems with generally uncertain transition rates[J]. IEEE Transactions on Automatic Control, 2015, 59(9): 2604–2610.
[14] Zhang M S. Robust stabilization for uncertain stochastic multiple time-delay systems with actuator saturation:an LMI approach[J]. Procedia Engineering, 2012, 29: 935–939.
[15] Wu Z G, Shi P, Su H Y. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1796–1806. DOI:10.1109/TSMCB.2012.2230441
[16] Ma Y H, Yan H J. Delay-dependent non-fragile robust dissipative filtering for uncertain nonlinear stochastic singular time-delay systems with Markovian jump parameters[J]. Advances in Difference Equations, 2013, 2013(1): 135–154. DOI:10.1186/1687-1847-2013-135
[17] Gao X W, Lian L, Qi W H. H-infinity control for stochastic time-delayed Markovian switching systems with partly known transition rates and input saturation[J]. International Journal of Control, Automation and Systems, 2016, 14(3): 637–646. DOI:10.1007/s12555-015-0032-0
[18] Ji K, Wei D. Resilient control for wireless networked control systems[J]. International Journal of Control, Automation and Systems, 2011, 9(2): 285–293. DOI:10.1007/s12555-011-0210-7
[19] Hu Y, Li J S, Holloway L E. Resilient control for serial manufacturing networks with advance notice of disruptions[J]. IEEE Transactions on Systems, Man and Cybernetics:Systems, 2013, 43(1): 98–114. DOI:10.1109/TSMCA.2012.2189879