东北大学学报:自然科学版 ›› 2015, Vol. 36 ›› Issue (4): 527-532.DOI: 10.12068/j.issn.1005-3026.2015.04.016

• 机械工程 • 上一篇    下一篇

数据挖掘技术在全断面掘进机故障诊断中的应用

张天瑞1, 于天彪1, 赵海峰2, 王宛山1   

  1. (1.东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2.北方重工集团有限公司 全断面掘进机国家重点实验室, 辽宁 沈阳110141)
  • 收稿日期:2014-04-23 修回日期:2014-04-23 出版日期:2015-04-15 发布日期:2014-11-07
  • 通讯作者: 张天瑞
  • 作者简介:张天瑞(1985-),男,河北深州人,东北大学博士研究生; 于天彪(1968-),男,吉林榆树人,东北大学教授,博士生导师; 王宛山(1946-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点基础研究发展计划项目(2010CB736007); 中央高校基本科研业务费专项资金资助项目(N110603007).

Application of Data Mining Technology in Fault Diagnosis of Tunnel Boring Machine

ZHANG Tian-rui1, YU Tian-biao1, ZHAO Hai-feng2, WANG Wan-shan1   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2. State Key Laboratory of Tunnel Boring Machine, Northern Heavy Industries Group Co., Ltd., Shenyang 110141, China.
  • Received:2014-04-23 Revised:2014-04-23 Online:2015-04-15 Published:2014-11-07
  • Contact: ZHANG Tian-rui
  • About author:-
  • Supported by:
    -

摘要: 分析了全断面掘进机复杂的故障机理和运行参数,研究了将粗糙集和决策树应用到数据挖掘中的方法.以全断面掘进机刀盘的一些实时数据为例,采用MATLAB 7.0对数据进行离散化处理,结合粗糙集属性约简的算法对故障样本进行冗余属性的约简;然后,利用决策树算法对约简后的故障样本集进行规则提取,利用数据挖掘工具Clementine实现了C4.5算法和改进的C4.5算法,对其结果进行了对比分析;最后,运用VB编程对全断面掘进机采集的部分数据进行测试,结果表明该融合算法是一种快速、有效、可靠的故障检测与诊断的新途径.

关键词: 全断面掘进机, 数据挖掘, 粗糙集, 决策树, 融合算法

Abstract: Complex fault mechanism and operation parameters of the tunnel boring machine (TBM) were analyzed, and the method of rough set and decision tree algorithm applying to data mining was studied. Take several MATLAB 7.0 dispersed data of tunnel boring machine cutter head as an example, the redundancy attribute of fault samples was reduced by the combination with the rough set attribute reduction algorithm. The rules were extracted with the decision-making tree algorithm. The C4.5 algorithm and the improved C4.5 algorithm were implemented with the data mining tool Clementine, with the results compared. The data was tested by the VB programming. The results showed that the fusion algorithm is a rapid, effective and reliable approach for fault detection and diagnosis.

Key words: tunnel boring machine, data mining, rough set, decision tree, fusion algorithm

中图分类号: