东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (2): 153-157.DOI: 10.12068/j.issn.1005-3026.2017.02.001

• 信息与控制 •    下一篇

一类求解优化问题的神经网络及其全局吸引性分析

王占山1, 康云云2, 牛海莎1   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 国网池州供电公司, 安徽 池州247100)
  • 收稿日期:2015-10-18 修回日期:2015-10-18 出版日期:2017-02-15 发布日期:2017-03-03
  • 通讯作者: 王占山
  • 作者简介:王占山(1971-),男,辽宁抚顺人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61473070,61433004); 流程工业综合自动化国家重点实验室项目(2013ZCX01).

A Class of Neural Networks for Solving Optimization Problems with Global Attractivity

WANG Zhan-shan1, KANG Yun-yun2, NIU Hai-sha1   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Chizhou Power Supply Company of State Grid, Chizhou 247100, China.
  • Received:2015-10-18 Revised:2015-10-18 Online:2017-02-15 Published:2017-03-03
  • Contact: WANG Zhan-shan
  • About author:-
  • Supported by:
    -

摘要: 构造了一个以微分包含形式给出的神经网络模型来求解带有等式约束和不等式约束的非线性最优化问题.通过在网络模型中引入含有加权矩阵的高阶补偿项,不仅提高了神经网络优化计算的收敛速度,而且改进了优化解从不可行域逐步收敛到稳定域的问题.理论上不仅证明了神经网络的解的全局存在性和唯一性,也证明了解的有界性以及在有限的时间内收敛到最优化问题所确定的最优解集中,并分析了神经网络的全局吸引性.通过三个数值例子验证了所提出的神经网络优化的有效性.

关键词: 神经网络, 微分包含, 神经计算, 优化, 全局吸引

Abstract: A recurrent neural network in the form of differential inclusion was proposed for solving a class of nonlinear optimization problems, where the constraints were defined by a class of inequality and equality constraints. A higher-order compensation term was involved in the considered neural model, therefore, the convergence rate of the neural computation was significantly increased and the unstable problem of the optimal solution from infeasible domain to feasible domain was solved. In theory, it is proven that not only the solution of the proposed network exists globally and uniquely, but also the solution of the proposed network is bounded and is convergent to the optimal solution set of the optimization problem. Meanwhile, global attractivity of the neural network was analyzed. Three numerical examples were used to show the effectiveness and good performance of the proposed neural network.

Key words: neural networks, differential inclusion, neural computation, optimization, global attractivity

中图分类号: