东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (2): 195-199.DOI: 10.12068/j.issn.1005-3026.2017.02.009

• 信息与控制 • 上一篇    下一篇

基于近邻主特征匹配的微纳米尺度位移测量

刘永俊1,2, 魏阳杰1, 王义1   

  1. (1. 东北大学 计算机科学与工程学院, 辽宁 沈阳110819; 2. 常熟理工学院 计算机科学与工程学院, 江苏 常熟215500 )
  • 收稿日期:2015-09-14 修回日期:2015-09-14 出版日期:2017-02-15 发布日期:2017-03-03
  • 通讯作者: 刘永俊
  • 作者简介:刘永俊(1981-),男,山东青岛人,常熟理工学院副教授,东北大学博士研究生; 王义(1961-),男,内蒙古赤峰人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61305025); 江苏省高校自然科学基金资助项目(15KJB520001); 中央高校基本科研业务费专项资金资助项目(N120404008).

A Displacement Measurement Method of Micro/Nano Scale Based on Neighbor Principal Feature Matching

LIU Yong-jun1,2, WEI Yang-jie1, WANG Yi1   

  1. 1. School of Computer Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China.
  • Received:2015-09-14 Revised:2015-09-14 Online:2017-02-15 Published:2017-03-03
  • Contact: WEI Yang-jie
  • About author:-
  • Supported by:
    -

摘要: 提出了一种基于近邻主特征匹配的亚像素级位移测量方法.改进后的近邻主特征提取过程通过修正散度矩阵的构造,最大化相邻位移图像块投影距离,提高了算法的精度和稳定性.通过将训练过程离线化,提出了基于近邻主特征匹配的微纳米位移测量算法,并通过仿真实验验证了图像块在不同大小和位置情况下算法的精度.在高精度纳米平台、高倍显微镜及标准栅格构成的系统中进行了多角度的实验,验证了算法的有效性.算法的测量精度比传统的图像块匹配方法提高了近10倍,特别是算法对于图像块位置和大小的选择鲁棒性更高.

关键词: 微纳米图像, 主成分分析, 近邻主特征, 图像块匹配, 亚像素

Abstract: A new sub-pixel displacement measurement method is proposed based on the neighbor principal feature matching. The improved main features extraction process enhances the accuracy and stability of the algorithm by reconstructing divergence correction matrix and maximizing the distance of adjacent image blocks. The overall micro/nano scale measurement method is designed based on the neighbor principal feature matching by off-line training process, and the simulation verifies the accuracy of the method which is used for the image blocks with different sizes and positions. The high-precision nano platform, the high power microscope and the standard grid are used together to validate the measurement. The accuracy of the algorithm is increased by nearly 10 times compared with the conventional blocks matching method. Further, the algorithm has higher robustness in selecting the position and size of the image blocks.

Key words: micro/nano image, principal component analysis, neighbor principal feature, image block matching, sub-pixel

中图分类号: