东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (11): 1534-1537.DOI: 10.12068/j.issn.1005-3026.2017.11.004

• 信息与控制 • 上一篇    下一篇

基于肺音谱图Hough变换的喘鸣音识别方法

张柯欣1,2, 龙哲1, 王雪峰3, 赵宏1   

  1. (1. 东北大学 中荷生物医学与信息工程学院, 辽宁 沈阳110169; 2. 辽宁中医药大学, 辽宁 沈阳110847; 3. 辽宁中医药大学附属医院, 辽宁 沈阳110032)
  • 收稿日期:2016-06-03 修回日期:2016-06-03 出版日期:2017-11-15 发布日期:2017-11-13
  • 通讯作者: 张柯欣
  • 作者简介:张柯欣(1972-),男,辽宁沈阳人,东北大学博士研究生,辽宁中医药大学副教授; 王雪峰(1957-),女,辽宁沈阳人,辽宁中医药大学教授,博士生导师; 赵宏(1954-),男,河北河间人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(81273800).

Detection of Wheeze Based on Hough Transform of Spectrogram

ZHANG Ke-xin1,2, LONG Zhe 1, WANG Xue-feng3, ZHAO Hong1   

  1. 1.School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang 110169, China; 2. The Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China; 3. The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
  • Received:2016-06-03 Revised:2016-06-03 Online:2017-11-15 Published:2017-11-13
  • Contact: ZHANG Ke-xin
  • About author:-
  • Supported by:
    -

摘要: 提出了一种基于Hough变换从肺音的STFT光谱图中检测喘鸣音的方法.这一方法先对采集的数字肺音数据的STFT谱图进行ROI区域的截取,再利用Canny算子进行图像边缘检测,最后基于Hough变换数据的分析来自动识别喘鸣音.临床分析的数据包括临床采集的肺音和国际上共享的肺音文件.Hough变换检测方法在60例喘鸣音的检测中达到了87%的准确率,70例正常呼吸音的识别率达到74%.

关键词: 喘鸣音, Hough变换, STFT变换, 光谱图, 肺音识别

Abstract: A method based on Hough transform to detect the wheezes from the STFT spectrum of the lung sounds was presented. This method first clips the ROI region of the STFT spectrum of the digital lung sound data, then uses the Canny operator for image edge detection, and finally identifies the wheezes automatically based on the analysis of Hough transform data. The data for clinical analysis includes the clinical acquisition of lung sounds and the international shared lung sound files. Hough transform detection method got the accuracy rate of 87% in the detection of 60 cases of wheezes, and 74% for the 70 cases of normal respiratory sound.

Key words: wheeze, Hough transform, STFT transform, spectrogram, lung sound recognition

中图分类号: