东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (8): 1163-1168.DOI: 10.12068/j.issn.1005-3026.2018.08.020

• 机械工程 • 上一篇    下一篇

基于BP神经网络的煤层硬度多等级识别方法

刘永刚1,2, 侯立良2, 秦大同1,2, 胡明辉1,2   

  1. (1. 重庆大学 机械传动国家重点实验室, 重庆400044; 2. 重庆大学 汽车工程学院, 重庆400044)
  • 收稿日期:2017-03-20 修回日期:2017-03-20 出版日期:2018-08-15 发布日期:2018-09-12
  • 通讯作者: 刘永刚
  • 作者简介:刘永刚(1982-),男,重庆人,重庆大学副教授,博士; 秦大同(1956-),男,重庆人,重庆大学教授.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    国家重点基础研究发展计划项目(2014CB046304).国家自然科学基金资助项目(51171041).

Coal Seam Hardness Hierarchical Identification Method Based on BP Neural Network

LIU Yong-gang1,2, HOU Li-liang2, QIN Da-tong1,2, HU Ming-hui1,2   

  1. 1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044,China; 2. College of Automotive Engineering, Chongqing University, Chongqing 400044, China.
  • Received:2017-03-20 Revised:2017-03-20 Online:2018-08-15 Published:2018-09-12
  • Contact: LIU Yong-gang
  • About author:-
  • Supported by:
    -

摘要: 针对煤层硬度识别方面存在的问题,提出一种基于BP神经网络算法的煤层硬度多等级识别方法,将煤层硬度划分为6个等级进行识别.以采煤机截割电机和牵引电机的定子电流信号及调高油缸压力信号作为识别信号,利用小波包分解提取各个信号的特征量,并将其作为神经网络的输入样本进行训练和测试.经过实验,在仿真数据条件下本文提出的煤层硬度多等级识别方法对硬度等级的识别准确率为96.7%,在实机数据条件下识别准确率为93.3%,验证了该煤层硬度识别方法的有效性,为采煤机自适应截割过程煤层硬度高精度识别奠定了理论基础.

关键词: 滚筒式采煤机, 截割阻抗, 煤层硬度识别, 小波包分解, BP神经网络, 特征量

Abstract: A BP neural network algorithm based hierarchical identification method, which divides the coal seam hardness into six levels, was proposed for identifying the coal seam hardness. The identification signals were taken from the stator currents of both the cutting motor and the traction motor of the mining machine, as well as the pressure signal of the height adjustment cylinder. The wavelet packet decomposition was used for extracting the characteristics of each signal, and these signals were taken as the input signals for training and testing the neural network. The experimental results show that the identification accuracy reaches 96.7% and 93.3% toward the simulation data and the real data, respectively, validating the effectiveness of the method. The method proposed provides the foundation for precisely identification of coal seam hardness.

Key words: drum shearer, cutting impedance, coal seam hardness identification, wavelet packet decomposition, BP neural network, feature vector

中图分类号: