东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (9): 1293-1298.DOI: 10.12068/j.issn.1005-3026.2018.09.016

• 机械工程 • 上一篇    下一篇

基于水基MQL的DD5单晶合金铣削表面粗糙度研究

李强1,2, 巩亚东1, 梁彩霞1, 刘洺君1   

  1. (1.东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2.辽宁工程技术大学 机械工程学院, 辽宁 阜新123000)
  • 收稿日期:2017-06-02 修回日期:2017-06-02 出版日期:2018-09-15 发布日期:2018-09-12
  • 通讯作者: 李强
  • 作者简介:李强(1986-),男,辽宁沈阳人,东北大学博士研究生; 巩亚东(1958-),男,辽宁本溪人,东北大学教授,博士生导师.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51375082).国家自然科学基金资助项目(51171041).

Research on Milled Surface Roughness of DD5 Single Crystal Superalloy Based on Water-Based MQL Method

LI Qiang1,2, GONG Ya-dong1, LIANG Cai-xia1, LIU Ming-jun1   

  1. 1.School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China.
  • Received:2017-06-02 Revised:2017-06-02 Online:2018-09-15 Published:2018-09-12
  • Contact: GONG Ya-dong
  • About author:-
  • Supported by:
    -

摘要: 为探究DD5单晶镍基高温合金铣削表面质量,基于响应曲面法及水基微量润滑技术,采用四刃整体立铣刀在(001)晶面上沿[110]晶向进行槽铣实验.以主轴线速度、每齿进给量、切削液流速、空气压强及水油流量比为变量,表面粗糙度Ra为评价指标,基于极差和方差分析,找出显著影响铣削表面质量的冷却和铣削参数,并对其交互效应机理进行深入分析.进而采用逐步回归方法和粒子群优化算法对铣削表面粗糙度进行预测和优化,并基于均匀化设计对预测和优化结果进行评价.

关键词: DD5, 表面质量, 响应曲面法, 交互效应, 逐步回归, 粒子群优化

Abstract: In order to explore the relative problems of milled surface roughness of DD5 single crystal Ni-based superalloy, based on the response surface method(RSM)and water-based minimum quantity lubrication(MQL)technique, a series of milling experiments on(001)crystal plane along [110] crystal direction with the four flute whole end mill were conducted. The main spindle linear speed, tool feed per tooth, cutting fluid flow rate, air pressure and the flow rate ratio of water and oil were selected as the variables, while the surface roughness Ra was chosen as the evaluation indicator. Based on the range and variance analysis, the milling and cooling parameters that significantly affect the surface quality were found out and the interactive effects were deeply studied. Moreover, the surface roughness was predicted and optimized with stepwise regression and particle swarm optimization(PSO)method, respectively. The results were verified based on the uniform design method.

Key words: DD5, surface quality, RSM(response surface method), interactive effect, stepwise regression, particle swarm optimization(PSO)

中图分类号: