东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (5): 705-711.DOI: 10.12068/j.issn.1005-3026.2023.05.013

• 资源与土木工程 • 上一篇    下一篇

基于爆破矿石图像分割优化算法的大块率统计方法

毛亚纯1, 樊硕1, 曹旺1, 李时2   

  1. (1.东北大学 资源与土木工程学院, 辽宁 沈阳110819; 2.沈阳城市建设学院 土木工程学院, 辽宁 沈阳110167)
  • 发布日期:2023-05-24
  • 通讯作者: 毛亚纯
  • 作者简介:毛亚纯(1966-),男,辽宁本溪人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(52074064); 国家重点研发计划项目(2016YFC0801602).

Bulk Rate Statistical Method Based on an Optimised Algorithm for Blasted Ore Image Segmentation

MAO Ya-chun1, FAN Shuo1, CAO Wang1, LI Shi2   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 2. School of Civil Engineering, Shenyang Urban Construction University, Shenyang 110167, China.
  • Published:2023-05-24
  • Contact: FAN Shuo
  • About author:-
  • Supported by:
    -

摘要: 矿石图像分割效果受光照条件、目标密集性及边缘对比度低等因素制约,致使大块率统计精度偏低.为此以鞍千矿爆破矿石图像为数据源,首先利用双边滤波算法去除特征增强后的图像噪声,然后分别采用自适应阈值算法和整体嵌套边缘检测(holistically-nested edge detection,HED)算法初步分割矿石图像,再利用形态学和去除连通域算法去除因矿石表面纹理形成的分割孔洞,进一步融合两种分割结果,引入基于距离运算的分水岭算法消除矿石图像欠分割现象,最终实现矿石图像的优化分割.研究结果表明,该方法可有效提高爆破矿石图像分割准确性,实现露天矿爆破大块率精确统计,为爆破效果智能评价提供技术支持.

关键词: 爆破大块率;矿石图像分割;HED算法;自适应阈值算法;分水岭算法

Abstract: The ore image segmentation effect is limited by factors such as lighting conditions, targets density and low contrast of edges, resulting in low statistical accuracy of the bulk rate. Anqian Mine blasted ore image was used as the data source, firstly the bilateral filtering algorithm was used to remove the feature-enhanced image noise, then the adaptive thresholding algorithm and HED (holistically-nested edge detection) algorithm were used to initially segment the ore image, and then the morphology and connectivity removal algorithm were used to remove the segmentation hole formed by the texture of the ore surface. The results were further fused and a distance-based watershed algorithm was introduced to eliminate the under-segmentation of the ore image, and finally the optimal segmentation of the ore image was achieved. The results show that the proposed method can effectively improve the accuracy of blasted ore image segmentation, achieve accurate statistics of blasting bulk rate in open pit mines, and provide technical support for intelligent evaluation of blasting effects.

Key words: blasting bulk rate; ore image segmentation; HED (holistically-nested edge detection) algorithm; adaptive thresholding algorithm; watershed algorithm

中图分类号: