东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (6): 840-848.DOI: 10.12068/j.issn.1005-3026.2023.06.011

• 机械工程 • 上一篇    下一篇

基于改进粒子群优化算法的混凝土泵车全局功率匹配

饶红艳, 王少杰, 侯亮, 苏德赢   

  1. (厦门大学 机电工程系, 福建 厦门361101)
  • 发布日期:2023-06-20
  • 通讯作者: 饶红艳
  • 作者简介:饶红艳(1998-),女,福建三明人,厦门大学硕士研究生; 侯亮(1974-),男,河南许昌人,厦门大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2020YFB1709901,2020YFB1709904); 福建省自然科学基金资助项目(2022J01060); 福建省中央引导地方专项(2020L3002).

Global Power Matching of Concrete Pump Truck Based on Advanced Particle Swarm Optimization Algorithm

RAO Hong-yan, WANG Shao-jie, HOU Liang, SU De-ying   

  1. Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361101, China.
  • Published:2023-06-20
  • Contact: WANG Shao-jie
  • About author:-
  • Supported by:
    -

摘要: 针对混凝土泵车全局功率匹配技术存在优化算法求解质量差的问题,本文提出了一种基于改进粒子群算法的工况自适应混凝土泵车全局功率匹配策略.首先,在MWorks平台上构建基于发动机与液压泵等特性数据,集成液压、机械、控制、负载与动力五大模块的泵送系统模型;然后,采用改进粒子群算法进行全局匹配优化,输出不同作业需求下的参数经济匹配值;最后,基于构建的泵送系统仿真平台,分析典型工况下不同功率匹配策略的节能效果.结果表明:所提策略与传统策略相比,轻、中、重载工况分别节油5.86%,5.24%和1.74%.

关键词: 泵送系统;功率匹配;APSO算法;节能优化;MWorks仿真

Abstract: The optimization algorithm of concrete pump truck global power matching technology has poor solution quality, this paper proposed a condition adaptive global power matching strategy based on advanced particle swarm optimization. Firstly, based on the characteristic data of engine and hydraulic pump, a pumping system model on MWorks that integrated five major modules of hydraulic, mechanical, control, load and power is builted; Then, the advanced particle swarm optimization algorithm is used for global matching optimization and output the economic matching value of parameters under different operation requirements; Finally, a pumping system simulation platform is established to analyze the energy-saving effect of different power matching strategies under typical conditions. The results show that compared with the traditional strategy, strategy proposed saves fuel by 5.86%,5.24% and 1.74% under light, medium and heavy operation, respectively.

Key words: pumping system; power matching; advanced particle swarm optimization(APSO) algorithm; energy saving optimization; MWorks simulation

中图分类号: