东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (6): 906-912.DOI: 10.12068/j.issn.1005-3026.2023.06.019

• 生物工程 • 上一篇    

面向血管芯片微通道的红细胞形变学研究

胡晟1,2, 叶俊彦1, 赵勇1,2   

  1. (1. 东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛066004;2. 东北大学秦皇岛分校 河北省微纳精密光学传感与检测技术重点实验室, 河北 秦皇岛066004)
  • 发布日期:2023-06-20
  • 通讯作者: 胡晟
  • 作者简介:胡晟(1984-),男,云南景洪人,东北大学秦皇岛分校副教授.
  • 基金资助:
    国家自然科学基金资助项目(61903069); 河北省自然科学基金资助项目(F2020501040); 中央高校基本科研业务费专项资金资助项目(N2223034).

Study on Morphology of Red Blood Cell in Micro-channel Towards Vessel-on-Chip

HU Sheng1,2, YE Jun-yan1, ZHAO Yong1,2   

  1. 1. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 2. Hebei Key Laboratory of Micro-nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
  • Published:2023-06-20
  • Contact: HU Sheng
  • About author:-
  • Supported by:
    -

摘要: 由于红细胞具有双凹形结构和较好的超弹性响应,其能通过大尺度的拉伸和收缩变形穿梭于细长的毛细血管,为维持人体生命活动所需的氧气承担了重要输运工作.本文采用COMSOL有限元软件,依托流-固耦合模块进行了红细胞在不同粗细血管、血浆黏度,以及血液流速等关键影响因素的动态模拟.通过仿真计算可知红细胞能够轻松通过3 μm孔径的毛细血管,相比6 μm孔径的毛细血管承受了4.5倍的流体剪切力.同时5.5 mPa·s黏度的血浆诱使红细胞形成降落伞形状,并且中间凹陷结构消失逐渐沿着流速方向水平凸出.本文对T型和Y型微通道的流速进行了研究,两者的仿真结果都指出非对称流体环境使红细胞形成镰刀弯钩形状.另外,较高流速的支路通道在汇聚口较快诱发红细胞弯钩形状消失,逐渐演变为呈直杆形平躺流动.

关键词: 血管芯片;红细胞;流体动力学;超弹性材料;COMSOL

Abstract: Red blood cell (RBC), undertaking the significant work of oxygen transport to maintain human life, could shuttle spindly capillaries by their own stretching and contractile properties due to their biconcave discoid shape and hyperelastic responses. In this paper, the coupled fluid-solid module in finite element software COMSOL was used to study the dynamic simulation of RBC when the three factors, including capillary width, plasma viscosity, and blood flow rate were considered. The results implied that the RBC could easily pass through capillary with hole size of 3 μm, and the aqueous shear stress was 4.5 times greater than that in the capillary with 6 μm hole size. Meanwhile, the plasma viscosity of 5.5 mPa·s induced parachute-like formation of RBC. Furthermore, biconcave structure in the center gradually disappeared and turned into bulge along the flow direction. With regard to the study on fluidic velocities in T-shaped and Y-shaped micro-channel, both results indicated that the asymmetric structure caused the falcate shape of RBC. In addition, the higher fluidic velocity in the other branch channel, the easier the convergence leaded to the disappearance of falcate shape and the rod posture lying flat flowing in the solution.

Key words: vessel-on-chip; red blood cell (RBC); hydrodynamics; hyperelastic material; COMSOL

中图分类号: