东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (8): 1150-1158.DOI: 10.12068/j.issn.1005-3026.2024.08.011

• 机械工程 • 上一篇    下一篇

激光熔化沉积过程缺陷识别方法

刘伟嵬1,2, 刘炳君1, 刘焕强1, 刘泽远1   

  1. 1.大连理工大学 机械工程学院,辽宁 大连 116024
    2.大连理工大学 高性能精密制造全国重点实验室,辽宁 大连 116024
  • 收稿日期:2023-04-07 出版日期:2024-08-15 发布日期:2024-11-12
  • 作者简介:刘伟嵬(1981-),男,辽宁丹东人,大连理工大学副教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(52175455)

Defect Identification Method for Laser Melting Deposition Process

Wei-wei LIU1,2, Bing-jun LIU1, Huan-qiang LIU1, Ze-yuan LIU1   

  1. 1.School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China
    2.State Key Laboratory of High-Performance Precision Manufacturing,Dalian University of Technology,Dalian 116024,China. Corresponding author: LIU Wei?wei,E-mail: liuww@dlut. edu. cn
  • Received:2023-04-07 Online:2024-08-15 Published:2024-11-12

摘要:

激光熔化沉积加工过程中的缺陷萌生是制约激光熔化沉积技术发展的关键性问题.实现对缺陷的精确自动识别是提高激光熔化沉积技术应用水平的重要途径.提出了熔池瞬态特征提取算法,分析了熔池瞬态特征对沉积层熔合不良缺陷的影响关系,建立了熔池瞬态特征数据集.对主流识别算法进行了模型训练测试,获取了相对最优模型ResNet 34.为解决ResNet 34训练损失拟合效果差、计算速度慢的问题,结合传统卷积网络和LSTM(long short?term memory)网络,建立了训练和测试精度高且计算速度快的LRCN 64模型,测试准确率达95.8%,实现了对熔合不良缺陷的识别,为实现沉积件在线无损检测提供了技术支撑.

关键词: 激光熔化沉积, 熔池瞬态特征, 熔合不良, 长期循环卷积神经网络(LRCN), 残差神经网络(ResNet)

Abstract:

Defects in laser melting deposition are key problems restricting its development. Achieving precise automatic identification of defects is a crucial approach to enhance the application level of laser melting deposition technology. A novel algorithm for extracting the melt pool’s transient characteristics was presented, and the relationship between transient characteristics and lack of fusion defects of the deposition layers was found. Moreover, a dataset of the melt pool’s transient characteristics was established. The mainstream recognition algorithms were trained and tested, leading to the identification of the most effective model, ResNet 34. In order to solve the poor fitting training loss effect and slow calculating speed of ResNet 34, a hybrid LRCN 64 model was proposed combining the traditional convolutional networks and LSTM(long short?term memory) networks. It exhibited remarkable accuracy and significant calculating speed. The testing accuracy of the LRCN 64 model reaches 95.8%, thereby realizing the identification of lack of fusion defects, which provides valuable technical support to facilitate online non?destructive testing of deposited parts.

Key words: laser melting deposition, molten pool transient characteristics, lack of fusion, long?term recurrent convolutional neural network (LRCN), residual neural network (ResNet)

中图分类号: