东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (9): 1235-1243.DOI: 10.12068/j.issn.1005-3026.2024.09.003

• 信息与控制 • 上一篇    

基于误差因子的改进WLS超宽带定位算法

刘林1, 宋雨昊2,1()   

  1. 1.西南交通大学 信息编码与传输省重点实验室,四川 成都 611756
    2.轨道交通工程信息化国家重点实验室(中铁一院),陕西 西安 710043
  • 收稿日期:2023-04-28 出版日期:2024-09-15 发布日期:2024-12-16
  • 通讯作者: 宋雨昊
  • 作者简介:刘 林(1974-),女,四川资中人,西南交通大学副教授.
  • 基金资助:
    轨道交通工程信息化国家重点实验室(中铁一院)开放课题(SKLKZ19-03)

Improved WLS Ultra-wideband Positioning Algorithm Based on Error Factor

Lin LIU1, Yu-hao SONG2,1()   

  1. 1.Key Laboratory of Information Coding and Transmission,Southwest Jiaotong University,Chengdu 611756,China
    2.State Key Laboratory of Rail Transit Engineering Informatization (China Railway First Survey and Design Institute Group Co. ,Ltd. ),Xi’an 710043,China.
  • Received:2023-04-28 Online:2024-09-15 Published:2024-12-16
  • Contact: Yu-hao SONG
  • About author:SONG Yu-hao, E-mail: 544552319@qq.com

摘要:

为提高非视距场景下超宽带(ultra?wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.

关键词: 超宽带, 到达时间, 非视距, 1维卷积神经网络, 改进加权最小二乘算法

Abstract:

In order to improve the positioning accuracy of ultra?wideband (UWB) in non?line of sight (NLOS) scenarios, an improved weighted least square (WLS) algorithm based on error factor was proposed in this paper. A one dimensional convolutional neural network (1DCNN) is trained by using ranging values and real?time channel impulse response (CIR) features to achieve accurate prediction of error factor. Based on the predicted error factor, the weighting matrix of improved WLS algorithm is designed, and different base stations are given reasonable weights to improve the UWB positioning performance in NLOS scenarios. Static and dynamic measured data are collected from the real environment to verify the performance of the improved WLS algorithm. The experimental results show that the improved WLS algorithm has similar positioning performance to the least square (LS) algorithm and WLS algorithm in the line of sight (LOS) scenarios. In the NLOS scenarios, the improved WLS algorithm is obviously better than the LS algorithm and WLS algorithm, and can effectively restrain the NLOS error.

Key words: ultra?wideband, time of arrival, non?line of sight (NLOS), one dimensional convolution neural network (1DCNN), improved weighted least square (WLS) algorithm

中图分类号: