东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (9): 1342-1351.DOI: 10.12068/j.issn.1005-3026.2024.09.016
• 资源与土木工程 • 上一篇
收稿日期:
2023-04-17
出版日期:
2024-09-15
发布日期:
2024-12-16
通讯作者:
夏瑜
作者简介:
夏 瑜(1989-),女,湖南衡阳人,中国矿业大学(北京)副教授基金资助:
Yu XIA1(), Jing LIU1, Xu-wen HE1, Hong-ying YANG2
Received:
2023-04-17
Online:
2024-09-15
Published:
2024-12-16
Contact:
Yu XIA
About author:
XIA Yu,E-mail:xiayu@cumtb.edu.摘要:
为有效处理城市污水反渗透浓水(reverse osmosis concentrate,ROC)中有机物及认识其去除特性,采用常规指标、有机物相对分子质量分级和亲疏水分析,色谱-质谱技术及电子顺磁共振分析等研究该废水的臭氧催化氧化处理效果.结果表明:最优处理条件为臭氧质量浓度17 mg/L,原水pH 7.3,反应时间80 min;化学需氧量(chemical oxygen demand,COD)、254 nm波长下紫外吸光度(UV254)、大分子有机物(>30 ku)和疏水酸性组分(hydrophilic acid component,HOA)去除率分别为55.75%,85.05%,95.46%和72.06%;芳香烃、腐殖酸等难降解物及医药和个人护理品(PPCPs)的去除效果显著;产生了活性物质·OH;COD降解符合二级反应动力学模型.
中图分类号:
夏瑜, 刘静, 何绪文, 杨洪英. 臭氧催化氧化对城市污水反渗透浓水中有机物的去除特性[J]. 东北大学学报(自然科学版), 2024, 45(9): 1342-1351.
Yu XIA, Jing LIU, Xu-wen HE, Hong-ying YANG. Removal Effect of Organics in Reverse Osmosis Concentrate of Municipal Wastewater by Ozone Catalytic Oxidation[J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1342-1351.
指标 | ρCOD/(mg·L-1) | ρDOC/(mg·L-1) | UV254/cm-1 | SUVA/(L·m-1·mg-1) |
---|---|---|---|---|
数值 | 65.409±2.520 | 21.320±1.350 | 0.434±0.001 | 2.030±0.147 |
表1 ROC常规水质指标信息
Table 1 Index information of ROC conventional water quality
指标 | ρCOD/(mg·L-1) | ρDOC/(mg·L-1) | UV254/cm-1 | SUVA/(L·m-1·mg-1) |
---|---|---|---|---|
数值 | 65.409±2.520 | 21.320±1.350 | 0.434±0.001 | 2.030±0.147 |
图2 不同臭氧浓度下COD,DOC和UV254的去除率注:图例边的字母表示不同组别之间差异显著(P<0.05)(平均值±标准差)
Fig.2 COD,DOC and UV254 removal rates at differentozone concentrations (mean±standard error)(a)—COD; (b)—DOC; (c)—UV254.
图3 不同初始pH下COD,DOC和UV254的去除率注:图例边的字母表示不同组别之间差异显著(P<0.05)(平均值±标准差)
Fig.3 COD,DOC and UV254removal rates at differentinitial pH (mean±standard error)(a)—COD; (b)—DOC; (c)—UV254.
图4 臭氧催化氧化前后ROC的有机物分子质量分布和去除率(a)—原水; (b)—处理后出水; (c)—不同分子质量的有机物去除率.
Fig.4 Molecular weight distribution removal rates of ROC before and after ozone catalytic oxidation
图5 臭氧催化氧化前后ROC中有机物亲疏水性特性(a)—原水; (b)—处理后出水; (c)—各组分去除率.
Fig.5 Hydrophobic/hydrophilic properties of organic matters in ROC before and after ozone catalytic oxidation
图6 臭氧催化氧化处理前后ROC的三维荧光光谱图(a)—原水; (b)—处理后出水.
Fig.6 Three?dimensional fluorescence spectrogram of ROC before and after ozone catalytic oxidation treatment
序号 | 种类 | PPCPs | 质量浓度 | ||
---|---|---|---|---|---|
原水 | 出水 | 检出限 | |||
1 | 磺胺类 | 磺胺甲恶唑(SMX) | 68.559 | N.D.a | 0.116 |
2 | 磺胺吡啶(SPD) | 59.064 | N.D.a | 1.340 | |
3 | 磺胺间甲氧嘧啶(SMM) | 7.141 | 6.970 | 0.095 | |
4 | 磺胺嘧啶(SD) | 7.971 | N.D.a | 0.417 | |
5 | 甲氧苄啶(TP) | 5.866 | N.D.a | 0.017 | |
6 | 大环内酯类 | 阿奇霉素(ATM) | 15.969 | 2.898 | 2.470 |
7 | 罗红霉素(RTM) | 66.872 | N.D.a | 0.062 | |
8 | 克拉霉素(CTM) | 24.280 | N.D.a | 0.056 | |
9 | 红霉素(ETM) | 65.864 | 2.929 | 0.112 | |
10 | 喹诺酮类 | 环丙沙星(CPX) | 33.922 | N.D.a | 0.993 |
11 | 氧氟沙星(OFX) | 101.939 | 1.858 | 0.164 | |
12 | 酰胺醇类 | 氟苯尼考(FF) | 19.640 | N.D.a | 0.508 |
13 | 非多烯类 | 灰黄霉素(GSV) | 7.745 | N.D.a | 0.819 |
14 | 利托那韦(RTV) | 2.803 | 2.284 | 0.618 | |
15 | 苯扎贝特(BF) | 10.137 | N.D.a | 0.011 | |
16 | 卡马西平(CBZ) | 6.594 | N.D.a | 0.037 | |
17 | 氯贝酸(CA) | 19.729 | N.D.a | 7.598 | |
18 | 双氯芬酸(DF) | 36.842 | N.D.a | 1.090 |
表2 ROC臭氧催化氧化处理后PPCPs组分分析 (ng·L-1)
Table 2 Analysis of PPCPs composition after ozone catalytic oxidation of ROC
序号 | 种类 | PPCPs | 质量浓度 | ||
---|---|---|---|---|---|
原水 | 出水 | 检出限 | |||
1 | 磺胺类 | 磺胺甲恶唑(SMX) | 68.559 | N.D.a | 0.116 |
2 | 磺胺吡啶(SPD) | 59.064 | N.D.a | 1.340 | |
3 | 磺胺间甲氧嘧啶(SMM) | 7.141 | 6.970 | 0.095 | |
4 | 磺胺嘧啶(SD) | 7.971 | N.D.a | 0.417 | |
5 | 甲氧苄啶(TP) | 5.866 | N.D.a | 0.017 | |
6 | 大环内酯类 | 阿奇霉素(ATM) | 15.969 | 2.898 | 2.470 |
7 | 罗红霉素(RTM) | 66.872 | N.D.a | 0.062 | |
8 | 克拉霉素(CTM) | 24.280 | N.D.a | 0.056 | |
9 | 红霉素(ETM) | 65.864 | 2.929 | 0.112 | |
10 | 喹诺酮类 | 环丙沙星(CPX) | 33.922 | N.D.a | 0.993 |
11 | 氧氟沙星(OFX) | 101.939 | 1.858 | 0.164 | |
12 | 酰胺醇类 | 氟苯尼考(FF) | 19.640 | N.D.a | 0.508 |
13 | 非多烯类 | 灰黄霉素(GSV) | 7.745 | N.D.a | 0.819 |
14 | 利托那韦(RTV) | 2.803 | 2.284 | 0.618 | |
15 | 苯扎贝特(BF) | 10.137 | N.D.a | 0.011 | |
16 | 卡马西平(CBZ) | 6.594 | N.D.a | 0.037 | |
17 | 氯贝酸(CA) | 19.729 | N.D.a | 7.598 | |
18 | 双氯芬酸(DF) | 36.842 | N.D.a | 1.090 |
图10 臭氧催化氧化处理城市污水ROC的COD降解动力学拟合结果(a)—零级反应; (b)—一级反应; (c)—二级反应.
Fig.10 Kinetic fitting of COD degradation in municipal wastewater ROC treated by ozone catalytic oxidation
1 | Deng S X, Yan X T, Zhu Q Q,et al.The utilization of reclaimed water:possible risks arising from waterborne contaminants[J].Environmental Pollution,2019,254:113020. |
2 | 史普鑫,杨萍萍,丁晔,等.市政反渗透浓水及其深度处理工艺研究进展[J].化学工业与工程,2023,40(2):114-122. |
Shi Pu‑xin, Yang Ping‑ping, Ding Ye,et al.Research progress on municipal reverse osmosis concentrate and its advanced treatment technology[J].Chemical Industry and Engineering,2023,40(2):114-122. | |
3 | 韦晓竹.反渗透浓水中有机物的分析及去除研究[D].天津:天津大学,2014. |
Wei Xiao‑zhu.Study on analyis and removal of organics in reverse osmosis concentrate[D].Tianjin:Tianjin University,2014. | |
4 | Shanmuganathan S, Loganathan P, Kazner C,et al.Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate[J].Desalination,2017,401:134-141. |
5 | Liu L, Li Y, Yoza B A,et al.A char‑clay composite catalyst derived from spent bleaching earth for efficient ozonation of recalcitrants in water[J].The Science of the Total Environment,2020,699:134395. |
6 | 黄南,李阳,吴乾元,等.臭氧高效催化氧化处理城市污水反渗透浓水[J].工业水处理,2021,41(12):56-59. |
Huang Nan, Li Yang, Wu Qian‑yuan,et al.Effective treatment of municipal wastewater reverse osmosis concentrate by catalytic ozonation technology[J].Industrial Water Treatment,2021,41(12):56-59. | |
7 | Yang L Y, Sheng M, Li Y J,et al.A hybrid process of Fe-based catalytic ozonation and biodegradation for the treatment of industrial wastewater reverse osmosis concentrate[J].Chemosphere,2020,238:124639. |
8 | Chen X R, Gu H, Sun X L,et al.Improvement of coal gasification reverse osmosis concentrate treatment by Cu-Co-Mn/AC catalytic ozonation[J].Water Science and Technology,2023,87(1):144-156. |
9 | He Y L, Zhang H, Li J J,et al.Treatment of landfill leachate reverse osmosis concentrate from by catalytic ozonation with γ-Al2O3 [J].Environmental Engineering Science,2018,35(5):501-511. |
10 | Chen Y, Chen C M, Yoza B A,et al.Efficient ozonation of reverse osmosis concentrates from petroleum refinery wastewater using composite metal oxide‑loaded alumina[J].Petroleum Science,2017,14(3):605-615. |
11 | Sun W Q, Xiao Z Q, Sun Y J,et al.Preparation of Cu-Ce@γ-Al2O3 and study on catalytic ozone oxidation for the treatment of RO concentrate water[J].Water,2022,14(18):2881. |
12 | Wang J D, Zhang T, Mei Y,et al.Treatment of reverse‑osmosis concentrate of printing and dyeing wastewater by electro‑oxidation process with controlled oxidation‑reduction potential (ORP)[J].Chemosphere,2018,201:621-626. |
13 | Sonntag C V, Gunten U V, Sonntag C V,et al.Chemistry of ozone in water and wastewater treatment:from basic principles to applications[M].[s.l.]:IWA Publishing,2012. |
14 | Khuntia S, Sinha M K, Singh P.Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese‑based catalyst[J].Environmental Technology,2021,42(4):632-639. |
15 | Gome A, Upadhyay K.Removal of persistent chemical oxygen demand from pharmaceutical wastewater by ozonation at different pH[J].International Journal of Environmental Science & Technology,2023,20(2):2087-2098. |
16 | 刘雪莲.基于臭氧的高级氧化技术强化处理反渗透浓水[D].天津:天津大学,2020. |
Liu Xue‑lian.Enhanced treatment of reverse osmosis concentrated water by ozone based advanced oxidation processes[D].Tianjin:Tianjin University,2020. | |
17 | Gharbani P, Khosravi M, Tabatabaii S M,et al.Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone[J].International Journal of Environmental Science & Technology,2010,7(2):377-384. |
18 | 孙培柳.改性钢渣催化剂的制备及催化臭氧氧化苯酚研究[D].北京:中国地质大学(北京),2021. |
Sun Pei‑liu.Preparation of modified steel slag catalyst and its catalytic ozonation of phenol[D].Beijing:China University of Geosciences(Beijing),2021. | |
19 | 赵俊娜,李再兴,刘艳芳,等.Mn/γ-Al2O3催化剂的制备及头孢合成废水的催化臭氧氧化法深度处理[J].化工环保,2014,34(5):475-480. |
Zhao Jun‑na, Li Zai‑xing, Liu Yan‑fang,et al.Preparation of Mn/γ-Al2O3 catalyst and advanced treatment of cephalosporin synthesis wastewater[J].Environmental Protection of Chemical Industry,2014,34(5):475-480. | |
20 | 王宏伟,王天来,齐岩,等.臭氧催化氧化工艺中pH值对催化剂活性的影响研究[J].化工科技,2017,25(5):53-56. |
Wang Hong‑wei, Wang Tian‑lai, Qi Yan,et al.Effect of pH value on catalytic activity in catalytic ozonation process[J].Science & Technology in Chemical Industry,2017,25(5):53-56. | |
21 | Zheng X, Khan M T, Croué J P.Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling:isolation,characterization,and fouling effect of EfOM fractions[J].Water Research,2014,65:414-424. |
22 | 李小炼.城市污水厂二级出水EfOM超滤膜污染控制及机理研究[D].广州:广州大学,2021. |
Li Xiao‑lian.Study on pollution control and mechanism of EfOM ultrafiltration membrane in secondary effluent of municipal sewage plant[D].Guangzhou:Guangzhou University,2021. | |
23 | 李粟波.非均相催化剂和过氧化氢催化臭氧氧化深度去除再生水中有机物效能评价[D].北京:北京林业大学,2020. |
Li Su‑bo.Evaluation on the removal of organics from reclaimed water by heterogeneous catalysts and hydrogen peroxide catalytic ozonation processes[D].Beijing:Beijing Forestry University,2020. | |
24 | Gong J L, Liu Y D, Sun X B.O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater[J].Water Research,2008,42(4/5):1238-1244. |
25 | Jin P K, Jin X, Bjerkelund V A,et al.A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation[J].Water Research,2016,88:643-652. |
26 | 李敏.Mn(Ⅱ)@γ-Al2O3催化臭氧氧化石化二级出水的应用研究[D].北京:中国环境科学研究院,2022. |
Li Min.Application of Mn(II)@γ-Al2O3 catalytic ozonation in petrochemical secondary effluent[D].Beijing:Chinese Research Academy of Environmental Science,2022. | |
27 | Ikhlaq A, Brown D R, Kasprzyk‑Hordern B.Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites[J].Applied Catalysis B:Environmental,2014,154/155:110-122. |
28 | 李欣欣,解立平,王蒙,等.回流固定床臭氧催化氧化煤化工反渗透浓水[J].化工进展,2020,39(2):760-766. |
Li Xin‑xin, Xie Li‑ping, Wang Meng,et al.Ozone catalytic oxidation of reverse osmosis concentrated water by fixed bed with reflux[J].Chemical Industry and Engineering Progress,2020,39(2):760-766. | |
29 | Gao L H, Li S L, Wang Y T.Effect of different pH coking wastewater on adsorption of coking coal[J].Water Science and Technology,2016,73(3):582-587. |
30 | Yan L H, Su R G, Zhang C S,et al.Assessing the dynamics of chromophoric dissolved organic matter (CDOM) in the Yellow Sea and the East China Sea in autumn by EEMs-PARAFAC[J].Science China Chemistry,2012,55(12):2595-2609. |
31 | 渠冰.γ-Al2O3负载金属氧化物催化臭氧氧化焦化废水的RO浓水[D].武汉:华中科技大学,2020. |
Qu Bing.Ozonation of reverse osmosis concentrate from bio‑treated coking wastewater with metal oxide supported on γ-Al2O3 [D].Wuhan:Huazhong University of Science and Technology,2020. | |
32 | Chen Y W, Li S, Hu J Y.Photoelectrocatalytic degradation of organics and formation of disinfection byproducts in reverse osmosis concentrate[J].Water Research,2020,168:115105. |
33 | Gotvajn A Ž, Rozman U, Antončič T,et al.Fe2+ and UV catalytically enhanced ozonation of selected environmentally persistent antibiotics[J].Processes,2021,9(3):521. |
34 | Kråkström M, Saeid S, Tolvanen P,et al.Catalytic ozonation of the antibiotic sulfadiazine:reaction kinetics and transformation mechanisms[J].Chemosphere,2020,247:125853. |
35 | 吴雯艳,齐梦钰,张泽坤,等.磺胺类抗生素的污染现状及检测方法研究[J].环境科学与管理,2022,47(12):121-126. |
Wu Wen‑yan, Qi Meng‑yu, Zhang Ze‑kun,et al.Research progress on pollution status and detection methods of sulfonamide antibiotics[J].Environmental Science and Management,2022,47(12):121-126. | |
36 | 高俊红,王兆炜,张涵瑜,等.兰州市污水处理厂中典型抗生素的污染特征研究[J].环境科学学报,2016,36(10):3765-3773. |
Gao Jun‑hong, Wang Zhao‑wei, Zhang Han‑yu,et al.Occurrence and the fate of typical antibiotics in sewage treatment plants in Lanzhou[J].Acta Scientiae Circumstantiae,2016,36(10):3765-3773. | |
37 | Dutta K, Lee M Y, Lai W W P,et al.Removal of pharmaceuticals and organic matter from municipal wastewater using two‑stage anaerobic fluidized membrane bioreactor[J].Bioresource Technology,2014,165:42-49. |
38 | 王紫荆,吴瑶,吴俊慧,等.2010―2015年北京市综合医院抗生素使用现状[J].中华疾病控制杂志,2020,24(8):946-950. |
Wang Zi‑jing, Wu Yao, Wu Jun‑hui,et al.Antibiotics use in general hospitals in Beijing from 2010 to 2015[J].Chinese Journal of Disease Control & Prevention,2020,24(8):946-950. |
[1] | 潘晓林, 吴艳, 蒋涛, 涂赣峰. 乙酸盐对拜耳法脱硅产物析出行为的影响[J]. 东北大学学报:自然科学版, 2018, 39(9): 1262-1266. |
[2] | 冯雅丽, 易爱飞, 李浩然, 王维大. 玉米秸秆还原浸出高铁低品位锰矿研究[J]. 东北大学学报:自然科学版, 2015, 36(8): 1184-1188. |
[3] | 李英华;孙铁珩;李海波;徐新阳;. 地下渗滤系统不同基质层对污染物的去除效果[J]. 东北大学学报(自然科学版), 2010, 31(5): 737-740. |
[4] | 高锋;李凤华;王娜;樊占国;. 铝酸镧单晶基底上沉积BaPbO_3导电膜的研究[J]. 东北大学学报(自然科学版), 2009, 30(1): 98-100+104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||