东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 119-126.DOI: 10.12068/j.issn.1005-3026.2025.20230212
• 资源与土木工程 • 上一篇
张浩楠, 原琪, 苑春苗, 李刚
收稿日期:
2023-07-20
出版日期:
2025-01-15
发布日期:
2025-03-25
作者简介:
张浩楠(1999—),男,山西长治人,东北大学硕士研究生基金资助:
Hao-nan ZHANG, Qi YUAN, Chun-miao YUAN, Gang LI
Received:
2023-07-20
Online:
2025-01-15
Published:
2025-03-25
摘要:
为快速评估木粉爆炸超压及致灾距离,采用TNT当量法预测木粉爆炸超压值.利用ANSYS/LS-DYNA对木粉最大爆炸压力进行模拟.结果表明:当初始压力为0 MPa、粉尘质量浓度为750 g/m3时,模拟值与实验值误差在10%以内;当初始压力为0.101 MPa、粉尘质量浓度为730 g/m3时,计算值与实验值误差为2.44%,模拟值与实验值误差在7%以内,与计算值误差在8%以内,证明TNT当量法预测木粉爆炸超压在有/无标准大气压下均适用.根据TNT当量法估算建筑内粉尘爆炸超压分布结果,得到了人员伤亡、建筑损毁阈值,研究结果为木粉爆炸危险场所安全距离确定等防灾减灾措施提供参考依据.
中图分类号:
张浩楠, 原琪, 苑春苗, 李刚. 基于TNT当量法的木粉爆炸超压及致灾距离研究[J]. 东北大学学报(自然科学版), 2025, 46(1): 119-126.
Hao-nan ZHANG, Qi YUAN, Chun-miao YUAN, Gang LI. Study on Overpressure and Disaster Distance of Wood Dust Explosion Based on TNT Equivalent Method[J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 119-126.
v/(m·s-1) | pCJ/GPa | A/GPa | B/GPa | R1 | R2 | E/GPa | ||
---|---|---|---|---|---|---|---|---|
1 583 | 6 880 | 19.4 | 307 | 3.898 | 4.485 | 0.79 | 0.3 | 6.968 4 |
表1 TNT炸药材料参数
Table 1 Material parameters of TNT explosive
v/(m·s-1) | pCJ/GPa | A/GPa | B/GPa | R1 | R2 | E/GPa | ||
---|---|---|---|---|---|---|---|---|
1 583 | 6 880 | 19.4 | 307 | 3.898 | 4.485 | 0.79 | 0.3 | 6.968 4 |
C0/MPa | C1 | C2 | C3 | C4 | C5 | C6 | Ea/Pa | V | |
---|---|---|---|---|---|---|---|---|---|
1.290 | -0.1 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 2.5 | 1 |
表2 空气材料参数
Table 2 Material parameters of air
C0/MPa | C1 | C2 | C3 | C4 | C5 | C6 | Ea/Pa | V | |
---|---|---|---|---|---|---|---|---|---|
1.290 | -0.1 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 2.5 | 1 |
Eb/GPa | 泊松比 | A/MPa | B/MPa | C | N | |||||
---|---|---|---|---|---|---|---|---|---|---|
7 850 | 194.02 | 0.3 | 460 | 915 | 1 | 0.009 6 | 0.373 8 | 843 | 1 800 | 0.17 |
表3 304不锈钢材料参数[23]
Table 3 Material parameters of 304 stainless steel
Eb/GPa | 泊松比 | A/MPa | B/MPa | C | N | |||||
---|---|---|---|---|---|---|---|---|---|---|
7 850 | 194.02 | 0.3 | 460 | 915 | 1 | 0.009 6 | 0.373 8 | 843 | 1 800 | 0.17 |
网格尺寸/mm | 网格总数×10-4 | 监测点压力/MPa |
---|---|---|
3×3×3 | 19 | 0.604 |
2×2×2 | 73 | 0.728 |
1.5×1.5×1.5 | 170 | 0.647 |
表4 网格无关性验证
Table 4 Grid independence verification
网格尺寸/mm | 网格总数×10-4 | 监测点压力/MPa |
---|---|---|
3×3×3 | 19 | 0.604 |
2×2×2 | 73 | 0.728 |
1.5×1.5×1.5 | 170 | 0.647 |
网格编号 | 坐标/cm | 模拟压力/MPa | 实验测量压力/MPa | 误差/% |
---|---|---|---|---|
H246008 | (11.85,0,11.85) | 0.728 | 0.68 | 7.06 |
H253751 | (0,0,16.25) | 0.650 | 0.68 | 4.41 |
H766896 | (0,11.85,11.85) | 0.732 | 0.68 | 7.64 |
H244680 | (0,16.25,0) | 0.651 | 0.68 | 4.26 |
H766831 | (11.85,11.85,0) | 0.744 | 0.68 | 9.41 |
H253730 | (16.25,0,0) | 0.643 | 0.68 | 5.44 |
表5 各网格单元压力以及误差
Table 5 Pressure values and errors for each grid unit
网格编号 | 坐标/cm | 模拟压力/MPa | 实验测量压力/MPa | 误差/% |
---|---|---|---|---|
H246008 | (11.85,0,11.85) | 0.728 | 0.68 | 7.06 |
H253751 | (0,0,16.25) | 0.650 | 0.68 | 4.41 |
H766896 | (0,11.85,11.85) | 0.732 | 0.68 | 7.64 |
H244680 | (0,16.25,0) | 0.651 | 0.68 | 4.26 |
H766831 | (11.85,11.85,0) | 0.744 | 0.68 | 9.41 |
H253730 | (16.25,0,0) | 0.643 | 0.68 | 5.44 |
网格编号 | 坐标/cm | 压力/MPa | 实验测量压力/MPa | 误差/% |
---|---|---|---|---|
H246008 | (11.85,0,11.85) | 0.728 | 0.68 | 7.06 |
H253751 | (,0,16.25) | 0.650 | 0.68 | 4.41 |
H766896 | (,11.85,11.85) | 0.732 | 0.68 | 7.64 |
H244680 | (,16.25,0) | 0.651 | 0.68 | 4.21 |
H766831 | (11.85,11.85,0) | 0.744 | 0.68 | 9.41 |
H253730 | (16.25,0,0) | 0.643 | 0.68 | 5.44 |
表5 各网格单元压力以及误差
Table 5 Pressure values and errors for each grid unit
网格编号 | 坐标/cm | 压力/MPa | 实验测量压力/MPa | 误差/% |
---|---|---|---|---|
H246008 | (11.85,0,11.85) | 0.728 | 0.68 | 7.06 |
H253751 | (,0,16.25) | 0.650 | 0.68 | 4.41 |
H766896 | (,11.85,11.85) | 0.732 | 0.68 | 7.64 |
H244680 | (,16.25,0) | 0.651 | 0.68 | 4.21 |
H766831 | (11.85,11.85,0) | 0.744 | 0.68 | 9.41 |
H253730 | (16.25,0,0) | 0.643 | 0.68 | 5.44 |
网格编号 | 坐标/cm | 模拟爆炸超压/MPa | 实验 | 计算 | ||
---|---|---|---|---|---|---|
最大爆炸超压/MPa | 误差/% | 最大爆炸超压/MPa | 误差/% | |||
H248541 | (0,15,7.3) | 0.696 | 0.656 | 6.10 | 0.672 | 3.57 |
H248450 | (7.3,15,0) | 0.697 | 0.656 | 6.25 | 0.672 | 3.72 |
H575547 | (0,7.3,15) | 0.620 | 0.656 | 5.49 | 0.672 | 7.73 |
H897373 | (15,7.3,0) | 0.623 | 0.656 | 5.03 | 0.672 | 7.29 |
H897264 | (7.3,0,15) | 0.690 | 0.656 | 5.18 | 0.672 | 2.68 |
H575512 | (15,0,7.3) | 0.635 | 0.656 | 3.20 | 0.672 | 5.50 |
表6 监测网格模拟压力值与实验值及计算值
Table 6 Monitoring grid simulated pressure values, experimental values, and calculated values
网格编号 | 坐标/cm | 模拟爆炸超压/MPa | 实验 | 计算 | ||
---|---|---|---|---|---|---|
最大爆炸超压/MPa | 误差/% | 最大爆炸超压/MPa | 误差/% | |||
H248541 | (0,15,7.3) | 0.696 | 0.656 | 6.10 | 0.672 | 3.57 |
H248450 | (7.3,15,0) | 0.697 | 0.656 | 6.25 | 0.672 | 3.72 |
H575547 | (0,7.3,15) | 0.620 | 0.656 | 5.49 | 0.672 | 7.73 |
H897373 | (15,7.3,0) | 0.623 | 0.656 | 5.03 | 0.672 | 7.29 |
H897264 | (7.3,0,15) | 0.690 | 0.656 | 5.18 | 0.672 | 2.68 |
H575512 | (15,0,7.3) | 0.635 | 0.656 | 3.20 | 0.672 | 5.50 |
建筑物构件 | 人体 | ||
---|---|---|---|
破坏特征 | 冲击波最大 超压/MPa | 损伤程度 | 冲击波最大 超压/MPa |
大、小窗户玻璃掉落、窗框可能损坏 | 0.003 5~0.007 | 轻微(轻微的挫伤) | 0.02~0.03 |
未加固的混凝土墙或矿渣混凝土墙破坏 | 0.014~0.021 | 中等(听觉器官损伤、中等挫伤、骨折等) | 0.03~0.05 |
未加固的砖墙剪切和平移引起的破坏 | 0.049~0.056 | 严重(内脏严重挫伤、可引起死亡) | 0.05~0.1 |
波纹钢板构建的轻质拱形建筑物完全破坏 | 0.245~0.28 | 极严重(大部分人死亡) | >0.1 |
表7 冲击波最大超压作用下建筑物及人员易受破坏
Table 7 The overpressure values of vulnerable buildings and personnel under the maximum overpressure of shock wave
建筑物构件 | 人体 | ||
---|---|---|---|
破坏特征 | 冲击波最大 超压/MPa | 损伤程度 | 冲击波最大 超压/MPa |
大、小窗户玻璃掉落、窗框可能损坏 | 0.003 5~0.007 | 轻微(轻微的挫伤) | 0.02~0.03 |
未加固的混凝土墙或矿渣混凝土墙破坏 | 0.014~0.021 | 中等(听觉器官损伤、中等挫伤、骨折等) | 0.03~0.05 |
未加固的砖墙剪切和平移引起的破坏 | 0.049~0.056 | 严重(内脏严重挫伤、可引起死亡) | 0.05~0.1 |
波纹钢板构建的轻质拱形建筑物完全破坏 | 0.245~0.28 | 极严重(大部分人死亡) | >0.1 |
1 | Yuan Z, Khakzad N, Khan F,et al.Dust explosions:a threat to the process industries[J].Process Safety and Environmental Protection,2015,98:57-71. |
2 | Abbasi T, Abbasi S.A.Dust explosions—cases,causes,consequences,and control[J].Journal of Hazardous Materials,2007,140(1/2):7-44. |
3 | Iarossi I, Amyotte P R, Khan F I,et al.Explosibility of polyamide and polyester fibers[J].Journal of Loss Prevention in the Process Industries,2013,26(6):1627-1633. |
4 | Amyotte P R.Some myths and realities about dust explosions[J].Process Safety and Environmental Protection,2014,92(4):292-299. |
5 | Pang Z H, Zhu N F, Cui Y Q,et al.Experimental investigation on explosion flame propagation of wood dust in a semi‑closed tube[J].Journal of Loss Prevention in the Process Industries,2020,63:104028. |
6 | 喻孜,胡涛平,郭露,等.不同木粉浓度下爆炸压力的动力学理论模拟[J].林产工业,2019,46(5):7-11. |
Yu Zi, Hu Tao‑ping, Guo Lu,et al.The kinetics theoretical simulation of explosion pressure with different wood dust concentrations[J].China Forest Products Industry,2019,46(5):7-11. | |
7 | Bu Y J, Yuan C M, Amyotte P R,et al.Ignition hazard of non‑metallic dust clouds exposed to hotspots versus electrical sparks[J].Journal of Hazardous Materials,2019,365:895-904. |
8 | Lee M C, Kim Y S, Rie D H.Analysis of explosion characteristics of combustible wood dust in confined system using the thermal decomposition rate and mass loss rate[J].Applied Thermal Engineering,2016,109:432-439. |
9 | Islas A, Fernándes A R, Betegón C,et al.Computational assessment of biomass dust explosions in the 20 L sphere[J].Process Safety and Environmental Protection,2022,165:791-814. |
10 | Prugh R W.Quantitative evaluation of “bleve” hazards[J].Journal of Fire Protection Engineering,1991,3(1):9-24. |
11 | Cheng R S, Chen W S, Hao H,et al.Dynamic response of road tunnel subjected to internal boiling liquid expansion vapour explosion (BLEVE)[J].Tunnelling and Underground Space Technology,2022,123:104363. |
12 | Zhou H, Zheng C, Yue X S,et al.TNT equivalency method in confined space based on steel plate deformation[J].International Journal of Impact Engineering,2023,178:104587. |
13 | Guo Y B, Liu C C, Wang D G,et al.Numerical study and safety spacing of buried parallel gas pipelines:a study based on TNT equivalent method[J].International Journal of Pressure Vessels and Piping,2018,168:246-257. |
14 | Guo Y B, He L G, Wang D G,et al.Numerical investigation of surface conduit parallel gas pipeline explosive based on the TNT equivalent weight method[J].Journal of Loss Prevention in the Process Industries,2016,44:360-368. |
15 | Crowl D A, Louvar J F.化工过程安全理论及应用[M].蒋军成,译.北京:化学工业出版社,2006:164. |
(Crowl D A, | |
Louvar J F.Chemical process safety theory and applications[M].Translated by Jiang Jun‑cheng.Beijing:Chemical Industry Press,2006:164. | |
16 | Wu C Q, Hao H.Modelling of simultaneous ground shock and airblast pressure on nearby structures from surface explosion[J].International Journal of Impact Engineering,2005,31(6):699-717. |
17 | 国家技术监督局. 粉尘云最大爆炸压力和最大压力上升速率测定方法: [S].北京:中国标准出版社,1997. |
State Bureau of Quality and Technical Supervision of the People’s Republic of China. Determination for maximum explosion pressure and maximum rate of pressure rise of dust cloud: [S].Beijing:Standards Press of China,1997. | |
18 | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 物质热稳定性的热分析试验方法: [S].北京:中国标准出版社,2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Thermal analysis test methods for thermal stability of materials: [S].Beijing:Standards Press of China,2008. | |
19 | 中华人民共和国工业和信息化部. 热重-差热分析仪: [S].北京:机械工业出版社,2017. |
Ministry of Industry and Information of the People’ s Republic of China. Thermo gravimetric-differential thermal analyzer: [S].Beijing:China Machine Press,2017. | |
20 | Zhang B, Fu P F, Liu Y,et al.Investigation on the ignition,thermal acceleration and characteristic temperatures of coal char combustion[J].Applied Thermal Engineering,2017,113:1303-1312. |
21 | Labus M, Lempart M.Studies of polish paleozoic shale rocks using FTIR and TG/DSC methods[J].Journal of Petroleum Science and Engineering,2018,161:311-318. |
22 | Livermore Software Technology Corporation.LS-DYNA keyword user's manual[M].Livermore:Livermore Software Technology Corporation,2020. |
23 | Wang C Z, Wang H X, Shankar K,et al.Dynamic failure behavior of steel wire mesh subjected to medium velocity impact:experiments and simulations[J].International Journal of Mechanical Sciences,2022,216:106991. |
24 | 奥尔连科.爆炸物理学[M].孙承纬,译.北京:科学出版社,2011:592. |
П OPЛEHKOЛ.Explosive physics[M].Translated by Sun Cheng‑wei.Beijing:Science Press,2011:592. | |
25 | 吴艳青,刘彦,黄风雷,等.爆炸力学理论及应用[M].北京:北京理工大学出版社,2021:211. |
Wu Yan‑qing, Liu Yan, Huang Feng‑lei,et al.Theory and application of explosion mechanics[M].Beijing:Beijing Institute of Technology Press,2021:211. |
[1] | 李刚, 崔震, 胡朋, 倪磊. 双侧分支结构管道内粉尘爆炸传播规律[J]. 东北大学学报(自然科学版), 2021, 42(5): 734-740. |
[2] | 李刚, 胡朋, 张洋洋, 倪磊. 不同弯型管道内粉尘爆炸传播规律[J]. 东北大学学报:自然科学版, 2020, 41(9): 1316-1320. |
[3] | 粟登峰, 康勇, 王晓川, 郑丹丹. 高压水射流螺旋式切槽辅助松动爆破模型[J]. 东北大学学报:自然科学版, 2016, 37(12): 1778-1783. |
[4] | 张义民,杨健,胡鹏,王全彬. 考虑变位系数的直齿轮啮合特性分析[J]. 东北大学学报(自然科学版), 2013, 34(9): 1287-1291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||