东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (4): 33-42.DOI: 10.12068/j.issn.1005-3026.2025.20230286
刘兴龙1,2, 李晨1, 蔺增1
收稿日期:
2023-10-09
出版日期:
2025-04-15
发布日期:
2025-07-01
作者简介:
刘兴龙(1990—),男,山东临朐人,东北大学博士研究生Xing-long LIU1,2, Chen LI1, Zeng LIN1
Received:
2023-10-09
Online:
2025-04-15
Published:
2025-07-01
摘要:
采用真空电弧离子镀技术,使用TiSi (原子比80∶20)和AlTi (原子比67∶33)合金作为靶材,在WC-Co基体上沉积双层及多层TiAlSiN涂层.研究了涂层结构对微观结构、力学特性、摩擦学性能的影响.采用TEM,SEM,EDS,XRD、纳米压痕仪、显微硬度仪、结合力测试仪分别对涂层的截面及磨痕形貌、磨痕成分、微观结构、弹性模量、显微硬度、结合力等进行了分析;采用摩擦磨损试验机对涂层的摩擦学性能进行了分析.结果表明:多层结构涂层的结合力(>200 N)优于双层结构涂层,双层结构涂层具有较强的抵抗塑性变形能力,而多层结构涂层抵抗弹性变形的能力较强.在小载荷下涂层的摩擦系数受涂层表面形貌影响较大,而在大载荷下涂层的表面形貌对摩擦系数影响较小.氧化磨损仅出现在双层结构涂层中,而磨粒磨损在2种涂层摩擦过程均有出现,多层结构涂层的耐磨性能优于双层结构涂层.
中图分类号:
刘兴龙, 李晨, 蔺增. TiAlSiN涂层结构对涂层力学性能的影响[J]. 东北大学学报(自然科学版), 2025, 46(4): 33-42.
Xing-long LIU, Chen LI, Zeng LIN. Effect of TiAlSiN Coating Structure on Its Mechanical Properties[J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 33-42.
WC | Co | C | 其他 |
---|---|---|---|
9.85 | 6.0 | 5.57 | 0.15 |
表1 试样化学成分(质量分数) ((mass fraction) %)
Table 1 Chemical composition of the sample
WC | Co | C | 其他 |
---|---|---|---|
9.85 | 6.0 | 5.57 | 0.15 |
步骤 | 偏置 电压/V | Ar cm3·min-1 | H2 cm3·min-1 | N2稳 压/ Pa | 弧电流/ A | 沉积温度/℃ | 沉积时间/min | ||
---|---|---|---|---|---|---|---|---|---|
Ti | AlTi | TiSi | |||||||
a-1 | 50 | 100 | 0 | — | 80 | 0 | 0 | 480 | 15 |
a-2 | 140 | 100 | 100 | — | 80 | 0 | 0 | 480 | 15 |
a-3 | 140 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
a-4 | 150 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
a-5 | 40 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 60 |
a-6 | 80 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 20 |
a-7 | 80 | 0 | 0 | 3.5 | 0 | 0 | 140 | 480 | 70 |
b-1 | 50 | 100 | 0 | — | 80 | 0 | 0 | 480 | 15 |
b-2 | 140 | 100 | 100 | — | 80 | 0 | 0 | 480 | 15 |
b-3 | 140 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
b-4 | 150 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
b-5 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 60 |
b-6 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 2 |
b-7 | 60 | 0 | 0 | 3.5 | 0 | 140 | 480 | 2 | |
b-(8~21) | b-6与b-7往复叠层 | ||||||||
b-22 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 30 |
表2 涂层的沉积参数
Table 2 Deposition parameters of the coatings
步骤 | 偏置 电压/V | Ar cm3·min-1 | H2 cm3·min-1 | N2稳 压/ Pa | 弧电流/ A | 沉积温度/℃ | 沉积时间/min | ||
---|---|---|---|---|---|---|---|---|---|
Ti | AlTi | TiSi | |||||||
a-1 | 50 | 100 | 0 | — | 80 | 0 | 0 | 480 | 15 |
a-2 | 140 | 100 | 100 | — | 80 | 0 | 0 | 480 | 15 |
a-3 | 140 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
a-4 | 150 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
a-5 | 40 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 60 |
a-6 | 80 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 20 |
a-7 | 80 | 0 | 0 | 3.5 | 0 | 0 | 140 | 480 | 70 |
b-1 | 50 | 100 | 0 | — | 80 | 0 | 0 | 480 | 15 |
b-2 | 140 | 100 | 100 | — | 80 | 0 | 0 | 480 | 15 |
b-3 | 140 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
b-4 | 150 | 100 | 0 | — | 100 | 0 | 0 | 480 | 30 |
b-5 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 60 |
b-6 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 2 |
b-7 | 60 | 0 | 0 | 3.5 | 0 | 140 | 480 | 2 | |
b-(8~21) | b-6与b-7往复叠层 | ||||||||
b-22 | 60 | 0 | 0 | 3.5 | 0 | 140 | 0 | 480 | 30 |
图4 双层及多层结构涂层高分辨截面TEM显微图像及EDS面扫描图像(a)—SiTiN层,TEM形貌; (b)—SiTiN层,TEM形貌(放大);(c)—SiTiN层,EDS面扫描; (d)—AlTiN层,TEM形貌;(e)—AlTiN层,EDS面扫描; (f)—AlTiN/SiTiN层,TEM形貌;(g)—AlTiN/SiTiN层,EDS面扫描.
Fig.4 TEM micrograph and EDS scanning image ofhigh-resolution cross-section of the double and multilayer structural coatings
图9 划痕试验中双层结构涂层的声发射信号AE、加载力Fn、穿透深度Pd、划痕形貌
Fig.9 AE signal (AE), loading force (Fn), penetration depth (Pd), and scratch morphology of the dual-layer coating measured in the scratch test
图10 划痕试验中多层结构涂层的声发射信号AE、加载力Fn、穿透深度Pd、划痕形貌
Fig.10 AE signal (AE), loading force (Fn), penetration depth (Pd), and scratch morphology of the multi-layer structured coating measured in the scratch test
1 | Makabe R, Nakajima S, Tabata O, et al. Dependence of the hardness of titanium nitride prepared by plasma chemical vapour deposition on the gas flow rate and the r.f. power[J]. Thin Solid Films, 1986, 137(1): 49-50. |
2 | Chang C L, Chen W C, Tsai P C, et al. Characteristics and performance of TiSiN/TiAlN multilayers coating synthesized by cathodic arc plasma evaporation[J]. Surface and Coatings Technology, 2007, 202(4/5/6/7): 987-992. |
3 | Boelens S, Veltrop H. Hard coatings of TiN, (TiHf)N and (TiNb)N deposited by random and steered arc evaporation[J]. Surface and Coatings Technology, 1987, 33: 63-71. |
4 | Cho C W, Lee Y Z. Effects of the oxide layer formed on TiN coated silicon wafer on the friction and wear characteristics in dry sliding[J]. Surface & Coatings Technology,2003,168(1):84-90. |
5 | Rebouta L, Vaz F, Andritschky M, et al. Oxidation resistance of (Ti, Al, Zr, Si)N coatings in air[J]. Surface and Coatings Technology, 1995, 76: 70-74. |
6 | Palmier S, Rullier J L, Capoulade J, et al. Effect of laser irradiation on silica substrate contaminated by aluminum particles[J]. Applied Optics, 2008, 47(8): 1164-1170. |
7 | Artur R S, Evgenii D K, Yuriy A G, et al. Improvement of mechanical properties and adhesion of Ti-Al-Si-N coatings by alloying with Ta[J]. Lubricants,2020,10(178):178. |
8 | Ramazanov K N, Vardanyan E L, Mukhamadeev V R, et al. Change in the chemical composition of a carbide tool with TI-Al-N coating surface layers during machining[J]. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2022, 16(3): 412-415. |
9 | Kehal A, Saoula N, Abaidia S E H, et al. Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels[J]. Surface and Coatings Technology, 2021, 421: 127444. |
10 | Kiryukhantsev-Korneev P V, Shtansky D V, Petrzhik M I, et al. Thermal stability and oxidation resistance of Ti-B-N, Ti-Cr-B-N, Ti-Si-B-N and Ti-Al-Si-B-N films[J]. Surface and Coatings Technology, 2007, 201(13): 6143-6147. |
11 | Zhang C, Qiu J T, Kong F, et al. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 014011. |
12 | Tanaka Y, Ichimiya N, Onishi Y, et al. Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications[J]. Surface and Coatings Technology, 2001, 146: 215-221. |
13 | Hörling A, Hultman L, Odén M, et al. Mechanical properties and machining performance of Ti1- x Al x N-coated cutting tools[J]. Surface and Coatings Technology, 2005, 191(2/3): 384-392. |
14 | Yu D H, Wang C Y, Cheng X L, et al. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology[J]. Thin Solid Films, 2009, 517(17): 4950-4955. |
15 | Liu A H, Deng J X, Cui H B. Friction and wear properties of TiN, AlTiN, AlTiN and CrAlN PVD nitride coatings[J]. International Journal of Refractory Metals and Hard Materials,2012,31:82-88. |
16 | Fukumoto N, Ezura H, Suzuki T. Synthesis and oxidation resistance of TiAlSiN and multilayer TiAlSiN/CrAlN coating[J]. Surface and Coatings Technology, 2009, 204(6/7): 902-906. |
17 | Li W Z, Yuan Z W, Zhu Y B, et al. Influence of nitrogen partial pressure on structure, mechanical and tribological properties of TaCN coatings[J]. Ceramics International, 2021, 47(18): 26233-26241. |
18 | Xia B, Zhou S G, Wang Y X, et al. Multilayer architecture design to enhance load-bearing capacity and tribological behavior of CrAlN coatings in seawater[J]. Ceramics International, 2021, 47(19): 27430-27440. |
19 | Geng D S, Zeng R K, Wu Z T, et al. An investigation on microstructure and milling performance of arc-evaporated TiSin/AlTiN film[J]. Thin Solid Films, 2020, 709: 138243. |
20 | Wan Q, Yang B, Chen Y M, et al. Effect of bilayer period on microstructure and mechanical properties of TiSiN/TiN coatings[J]. Materialia, 2018,3:260-264. |
21 | Yao Y R, Li J L, Wang Y X, et al. Influence of the negative bias in ion plating on the microstructural and tribological performances of Ti-Si-N coatings in seawater[J]. Surface and Coatings Technology, 2015, 280: 154-162. |
22 | Kowalski S, Cygnar M. The application of TiSiN/TiAlN coatings in the mitigation of fretting wear in push fit joints[J]. Wear, 2019, 426: 725-734. |
23 | 费加喜. 电弧离子镀TiAlN基涂层的制备及其性能研究[D]. 广州: 广东工业大学, 2018. |
Fei Jia-xi. Preparation and properties of TiAlN-based coating by arc ion plating[D]. Guangzhou: Guangdong University of Technology, 2018. | |
24 | Shtansky D V, Kiryukhantsev-Korneev P V, Bashkova I A, et al. Multicomponent nanostructured films for various tribological applications[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 32-39. |
25 | 查旭明. 双层与纳米多层结构TiSiN/TiAlN涂层的力学及切削性能研究[D]. 泉州: 华侨大学, 2020. |
Zha Xu-ming. Study on mechanical and cutting properties of TiSiN/TiAlN coatings with double-layer and nano-multilayer structures[D]. Quanzhou: Huaqiao University, 2020. | |
26 | 程正. Ti6Al4V切削过程热力耦合作用下刀具磨损研究[D]. 昆明: 昆明理工大学, 2019. |
Cheng Zheng. Study on tool wear under thermal-mechanical coupling in Ti6Al4V cutting process[D]. Kunming: Kunming University of Science and Technology, 2019. | |
27 | Stewart V A, Brown R H. The interrelationship of shear and friction processes in machining under regenerative chatter conditions[M]//Proceedings of the Thirteenth International Machine Tool Design and Research Conference. London: Macmillan Education UK, 1973: 13-18. |
28 | Pu R, Yu Z G, Hao X Q, et al. Effect of Si content on microstructure, mechanical properties, and cutting performance of TiSiN/AlTiN dual-layer coating[J]. Journal of Manufacturing Processes,2020,88:134-144. |
29 | Zhang H D, Mei F S, Yu Y, et al. Improvement on the mechanical, tribological properties and cutting performance of AlTiN-based coatings by compositional and structural design[J]. Surface and Coatings Technology, 2021, 422: 127503. |
[1] | 罗忠, 赵江, 许春阳, 曹航. 考虑关节间隙的可调矢量喷管动力学特性[J]. 东北大学学报(自然科学版), 2025, 46(1): 61-67. |
[2] | 杨尚武, 瞿海霞, 黎恒君, 刘常升. 激光熔覆(Ti,W)C增强镍基涂层的性能[J]. 东北大学学报(自然科学版), 2024, 45(7): 953-959. |
[3] | 孙大增, 赵文, 许兴亮, 王鑫. 不同组构砂岩微观破坏特征分析[J]. 东北大学学报(自然科学版), 2024, 45(4): 584-591. |
[4] | 刘俊汝, 张国华, 周国治. w(Fe)/w(Ni)对Mo2FeB2基金属陶瓷的影响[J]. 东北大学学报(自然科学版), 2023, 44(9): 1269-1278. |
[5] | 常德强, 陈蕾, 毛宁, 柳静献. PCT纤维耐酸特性试验研究[J]. 东北大学学报(自然科学版), 2023, 44(6): 863-870. |
[6] | 王震, 姜茂发, 刘承军, 闵义. CaO-SiO2-Al2O3-Na2O-MgO系模铸保护渣微观结构解析[J]. 东北大学学报(自然科学版), 2023, 44(4): 517-523. |
[7] | 康玉梅, 谷今, 魏梦琦. 不同加载速率下软硬互层类岩石力学及声发射特性[J]. 东北大学学报(自然科学版), 2023, 44(3): 399-407. |
[8] | 赵飞翔, 迟世春. 基于离散元的碎片尺寸随机的颗粒破碎模拟方法[J]. 东北大学学报(自然科学版), 2023, 44(3): 408-414. |
[9] | 贾蓬, 祝鹏程, 李博, 毛松泽. 热损伤大理岩波动特征及声发射特性试验研究[J]. 东北大学学报(自然科学版), 2023, 44(2): 279-288. |
[10] | 吴冠庆, 魏进, 岳夏冰, 阴增亮. 低填方钢波纹管涵洞受力变形特性及垂直土压力计算[J]. 东北大学学报(自然科学版), 2022, 43(9): 1337-1345. |
[11] | 许江波, 费东阳, 孙浩珲, 崔易仑. 节理千枚岩能量传递与动力学特性[J]. 东北大学学报(自然科学版), 2021, 42(7): 986-995. |
[12] | 何聪, 徐国元, 张志刚. 地震作用下沉管隧道节段接头剪力键的力学性能[J]. 东北大学学报(自然科学版), 2021, 42(6): 871-878. |
[13] | 罗忠 , 孙永航, 葛长闯, 许春阳. 引射器活门调节机构的流固热耦合特性[J]. 东北大学学报(自然科学版), 2021, 42(1): 75-82. |
[14] | 李明, 刘铭瑞, 周立明. 力电湿多物理场耦合Cell-Based光滑有限元法研究[J]. 东北大学学报:自然科学版, 2020, 41(9): 1363-1368. |
[15] | 马辉, 崔璨 , 曾劲 , 闻邦椿. 考虑弹性支承的旋转凸肩叶片动力学特性分析[J]. 东北大学学报:自然科学版, 2019, 40(8): 1115-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||