1 |
袁霄, 陈勇平, 郭文静. 古建筑木结构多发残损的特征及防控分析[J]. 木材科学与技术, 2021, 35(5): 54-59.
|
|
Yuan Xiao, Chen Yong-ping, Guo Wen-jing. Features and prevention of common damages in ancient timber structures[J]. Chinese Journal of Wood Science and Technology, 2021, 35(5): 54-59.
|
2 |
李钊,王志涛,郭小东. 残损古建筑木结构力学性能相关研究进展与展望[J]. 林产工业, 2022, 59(12), 39-46.
|
|
Li Zhao, Wang Zhi-tao, Guo Xiao-dong. Research progress and prospect on mechanical properties of damaged ancient timber structures[J]. China Forest Products Industry, 2022, 59(12): 39-46.
|
3 |
陈偲,沈肇雨,王正, 等. 正交胶合木平面剪切的开裂形貌及其破坏模式探究[J]. 林产工业, 2022, 59(6),7-13,24.
|
|
Chen Si, Shen Zhao-yu, Wang Zheng, et al. Study on plane shear cracking morphology and failure mechanism of cross laminated timber[J]. China Forest Products Industry, 2022, 59(6): 7-13,24.
|
4 |
Vida C, Lukacevic M, Hochreiner G, et al. Size effect on bending strength of glued laminated timber predicted by a numerical simulation concept including discrete cracking[J]. Materials & Design, 2023, 225: 111550.
|
5 |
周宝华. 木材干燥过程中内应力的初步研究[J]. 南京林业大学学报(自然科学版), 1982, 6(2): 76-90.
|
|
Zhou Bao-hua. A preliminary study of the internal stresses of timber[J]. Journal of Nanjing Forestry University, 1982, 6(2): 76-90.
|
6 |
Liu J X, Wang X M. Effect of drying temperature and relative humidity on contraction stress in wood[J]. BioResources, 2016, 11(3): 6625-6638.
|
7 |
程曦依, 李贤军, 黄琼涛, 等. 木材干燥后养生期间含水率及应力变化特点[J]. 林业工程学报, 2016, 1(2): 38-44.
|
|
Cheng Xi-yi, Li Xian-jun, Huang Qiong-tao, et al. The study of moisture content and inner stress variation of kiln-dried wood during equalization treatment[J]. Journal of Forestry Engineering, 2016, 1(2): 38-44.
|
8 |
高璇. 湿度循环作用下木材的横纹应力疲劳研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
Gao Xuan. Study on transverse stress fatigue of wood under humidity cycle[D]. Harbin: Harbin Institute of Technology, 2016.
|
9 |
Arends T, Pel L, Huinink H P. Hygromorphic response dynamics of oak: towards accelerated material characterization[J]. Materials and Structures, 2017, 50(3): 181.
|
10 |
Yu T Y, Khaloian A, van de Kuilen J W. An improved model for the time-dependent material response of wood under mechanical loading and varying humidity conditions[J]. Engineering Structures, 2022, 259: 114116.
|
11 |
陈旭, 祝恩淳. 胶合木梁中温度与湿度应力研究[J]. 工业建筑, 2008, 38(sup1): 862-866.
|
|
Chen Xu, Zhu En-chun. Moisture and thermal stresses in glulam beams[J]. Industrial Construction, 2008, 38(sup1): 862-866.
|
12 |
Gereke T, Niemz P. Moisture-induced stresses in spruce cross-laminates[J]. Engineering Structures, 2010, 32(2): 600-606.
|
13 |
Angst V, Malo K A. Moisture-induced stresses in glulam cross sections during wetting exposures[J]. Wood Science and Technology, 2013, 47(2): 227-241.
|
14 |
Endo K, Obataya E, Zeniya N, et al. Effects of heating humidity on the physical properties of hydrothermally treated spruce wood[J]. Wood Science and Technology, 2016, 50(6): 1161-1179.
|
15 |
Franke B, Franke S, Schiere M, et al. Moisture content and moisture-induced stresses of large glulam members: laboratory tests, in situ measurements and modelling[J]. Wood Material Science & Engineering, 2019, 14(4): 243-252.
|
16 |
Autengruber M, Lukacevic M, Gröstlinger C, et al. Numerical assessment of wood moisture content-based assignments to service classes in EC5 and a prediction concept for moisture-induced stresses solely using relative humidity data[J]. Engineering Structures, 2021, 245: 112849.
|
17 |
Jia D H, Afzal M T. Modeling of moisture diffusion in microwave drying of hardwood[J]. Drying Technology, 2007, 25(3): 449-454.
|
18 |
战剑锋, 顾继友, 艾沐野. 白桦干燥过程的横纹干燥应力[J]. 东北林业大学学报, 2005, 33(4): 25-28.
|
|
Zhan Jian-feng, Gu Ji-you, Ai Mu-ye. Transverse drying stress of white birch wood during drying[J]. Journal of Northeast Forestry University, 2005, 33(4): 25-28.
|
19 |
陈孔阳. 木构件腐朽和干缩裂缝的研究[D]. 南京: 东南大学, 2019.
|
|
Chen Kong-yang. Study on decay and shrinkage cracks of wood components[D]. Nanjing: Southeast University, 2019.
|
20 |
Chen K Y, Qiu H X, Sun M L, et al. Experimental and numerical study of moisture distribution and shrinkage crack propagation in cross section of timber members[J]. Construction and Building Materials, 2019, 221: 219-231.
|
21 |
Autengruber M, Lukacevic M, Gröstlinger C, et al. Finite-element-based prediction of moisture-induced crack patterns for cross sections of solid wood and glued laminated timber exposed to a realistic climate condition[J]. Construction and Building Materials, 2021, 271: 121775.
|
22 |
周鸿屹. 木结构钢填板螺栓连接节点力学性能试验研究与分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
Zhou Hong-yi. Experimental study and analysis on mechanical properties of bolted joints with steel filler plates in wood structures[D]. Harbin: Harbin Institute of Technology, 2017.
|
23 |
Larsen F, Ormarsson S. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs[J]. Wood Science and Technology, 2013, 47(4): 837-885.
|
24 |
何朝红. 胶合木—钢夹板螺栓连接力学性能试验研究[D]. 长沙: 中南林业科技大学, 2017.
|
|
He Zhao-hong. Experimental study on mechanical properties of bolted connection between glued wood and steel splint[D]. Changsha: Central South University of Forestry & Technology, 2017.
|
25 |
王娟,许刃文,杨庆山, 等.基于能量分析的唐代殿堂型木构架抗震机理研究[J].工程力学,2022,39(11): 73-88.
|
|
Wang Juan, Xu Ren-wen, Yang Qing-shan, et al. Energy-based Seismic Performance Analysis of Palace-style Timber Frame of Tang-dynasty[J]. Engineering Mechanics, 2022,39(11): 73-88.
|