
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (11): 106-114.DOI: 10.12068/j.issn.1005-3026.2025.20240085
收稿日期:2024-04-11
出版日期:2025-11-15
发布日期:2026-02-07
通讯作者:
王述红
作者简介:王骋飞(1999—),男,四川成都人,东北大学硕士研究生;
基金资助:
Cheng-fei WANG, Shu-hong WANG(
), Shi-hui JIAO, Ming-zhu REN
Received:2024-04-11
Online:2025-11-15
Published:2026-02-07
Contact:
Shu-hong WANG
摘要:
鱼腹梁支护变形计算是高次超静定问题,涉及应力应变的复杂关系.为建立适用于鱼腹梁支护结构体系变形的理论方法.本文在还原鱼腹梁支护受力和变形特征的基础上进行简化,提出鱼腹梁支护结构跨中挠度的计算方法.通过有限元软件对比多种工况,修正理论假设误差.得到一种较高精度的鱼腹梁支护跨中挠度计算方法.该方法可用于鱼腹梁支护变形情况的计算,能高效地预测鱼腹梁支护跨中变形情况.经多种方法验证表明,该方法误差较小且符合规律,可为相关工程提供参考.
中图分类号:
王骋飞, 王述红, 焦诗卉, 任明珠. 鱼腹梁支护跨中挠度的计算方法及其数值验证[J]. 东北大学学报(自然科学版), 2025, 46(11): 106-114.
Cheng-fei WANG, Shu-hong WANG, Shi-hui JIAO, Ming-zhu REN. Calculation Method and Its Numerical Verification of Mid-span Deflection of Fish-Bellied Beam Support[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 106-114.
图1 鱼腹梁支护结构示意图1—对撑杆件; 2—八字撑杆件; 3—预应力装置; 4—连接单元; 5—角撑杆件; 6—鱼腹梁主体; 7—腰梁; 8—立柱; 9—盖板; 10—系杆; 11—托梁; 12—围护结构.
Fig.1 Schematic diagram of fish-bellied beam support structure
| 工况编号 | 自变量 | 常数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| I/m4 | q/(kN·m-1) | ||||||||
| 1 | 12 | 5 | 0 | 206 | 206 | 0.006 69 | 0.021 95 | 0.003 04 | 100 |
| 2 | 12 | 8 | 1 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.007 33 | 125 |
| 3 | 12 | 10 | 2 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.009 78 | 150 |
| 4 | 19 | 5 | 0 | 206 | 206 | 0.009 30 | 0.029 62 | 0.009 78 | 150 |
| 5 | 19 | 8 | 1 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.003 04 | 100 |
| 6 | 19 | 10 | 2 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.007 33 | 125 |
| 7 | 26 | 5 | 1 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.007 33 | 150 |
| 8 | 26 | 8 | 2 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.009 78 | 100 |
| 9 | 26 | 10 | 0 | 206 | 206 | 0.009 30 | 0.029 62 | 0.003 04 | 125 |
| 10 | 12 | 5 | 2 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.007 33 | 100 |
| 11 | 12 | 8 | 0 | 206 | 206 | 0.011 90 | 0.036 14 | 0.009 78 | 125 |
| 12 | 12 | 10 | 1 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.003 04 | 150 |
| 13 | 19 | 5 | 1 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.009 78 | 125 |
| 14 | 19 | 8 | 2 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.003 04 | 150 |
| 15 | 19 | 10 | 0 | 206 | 206 | 0.011 90 | 0.036 14 | 0.007 33 | 100 |
| 16 | 26 | 5 | 2 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.003 04 | 125 |
| 17 | 26 | 8 | 0 | 206 | 206 | 0.006 69 | 0.021 95 | 0.007 33 | 150 |
| 18 | 26 | 10 | 1 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.009 78 | 100 |
表1 鱼腹梁支护工况表
Table 1 Fish-bellied beam support working condition table
| 工况编号 | 自变量 | 常数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| I/m4 | q/(kN·m-1) | ||||||||
| 1 | 12 | 5 | 0 | 206 | 206 | 0.006 69 | 0.021 95 | 0.003 04 | 100 |
| 2 | 12 | 8 | 1 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.007 33 | 125 |
| 3 | 12 | 10 | 2 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.009 78 | 150 |
| 4 | 19 | 5 | 0 | 206 | 206 | 0.009 30 | 0.029 62 | 0.009 78 | 150 |
| 5 | 19 | 8 | 1 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.003 04 | 100 |
| 6 | 19 | 10 | 2 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.007 33 | 125 |
| 7 | 26 | 5 | 1 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.007 33 | 150 |
| 8 | 26 | 8 | 2 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.009 78 | 100 |
| 9 | 26 | 10 | 0 | 206 | 206 | 0.009 30 | 0.029 62 | 0.003 04 | 125 |
| 10 | 12 | 5 | 2 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.007 33 | 100 |
| 11 | 12 | 8 | 0 | 206 | 206 | 0.011 90 | 0.036 14 | 0.009 78 | 125 |
| 12 | 12 | 10 | 1 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.003 04 | 150 |
| 13 | 19 | 5 | 1 000 | 206 | 206 | 0.006 69 | 0.021 95 | 0.009 78 | 125 |
| 14 | 19 | 8 | 2 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.003 04 | 150 |
| 15 | 19 | 10 | 0 | 206 | 206 | 0.011 90 | 0.036 14 | 0.007 33 | 100 |
| 16 | 26 | 5 | 2 000 | 206 | 206 | 0.011 90 | 0.036 14 | 0.003 04 | 125 |
| 17 | 26 | 8 | 0 | 206 | 206 | 0.006 69 | 0.021 95 | 0.007 33 | 150 |
| 18 | 26 | 10 | 1 000 | 206 | 206 | 0.009 30 | 0.029 62 | 0.009 78 | 100 |
| 工况编号 | 理论值 | 模拟值 | 差值 |
|---|---|---|---|
| 1 | 85.047 | 64.855 | 20.192 |
| 2 | 14.340 | 6.929 | 7.411 |
| 3 | -0.301 | -5.066 | 4.765 |
| 4 | 299.261 | 220.351 | 78.910 |
| 5 | 153.508 | 120.942 | 32.566 |
| 6 | 56.032 | 45.085 | 10.947 |
| 7 | 1 072.694 | 823.985 | 248.709 |
| 8 | 247.918 | 198.288 | 49.630 |
| 9 | 676.887 | 549.720 | 127.167 |
| 10 | 5.991 | 1.021 | 4.970 |
| 11 | 22.622 | 13.714 | 8.908 |
| 12 | 29.275 | 19.164 | 10.111 |
| 13 | 244.159 | 195.207 | 48.952 |
| 14 | 209.547 | 180.852 | 28.695 |
| 15 | 82.194 | 62.518 | 19.676 |
| 16 | 1 401.509 | 1 243.367 | 158.142 |
| 17 | 616.749 | 500.453 | 116.296 |
| 18 | 174.866 | 138.439 | 36.427 |
表2 理论计算结果及数值模拟结果 (simulation results mm)
Table 2 Theoretical calculation results and numerical
| 工况编号 | 理论值 | 模拟值 | 差值 |
|---|---|---|---|
| 1 | 85.047 | 64.855 | 20.192 |
| 2 | 14.340 | 6.929 | 7.411 |
| 3 | -0.301 | -5.066 | 4.765 |
| 4 | 299.261 | 220.351 | 78.910 |
| 5 | 153.508 | 120.942 | 32.566 |
| 6 | 56.032 | 45.085 | 10.947 |
| 7 | 1 072.694 | 823.985 | 248.709 |
| 8 | 247.918 | 198.288 | 49.630 |
| 9 | 676.887 | 549.720 | 127.167 |
| 10 | 5.991 | 1.021 | 4.970 |
| 11 | 22.622 | 13.714 | 8.908 |
| 12 | 29.275 | 19.164 | 10.111 |
| 13 | 244.159 | 195.207 | 48.952 |
| 14 | 209.547 | 180.852 | 28.695 |
| 15 | 82.194 | 62.518 | 19.676 |
| 16 | 1 401.509 | 1 243.367 | 158.142 |
| 17 | 616.749 | 500.453 | 116.296 |
| 18 | 174.866 | 138.439 | 36.427 |
图13 有限元模拟结果(a)—网格模型; (b)—预应力为0kN时变形情况; (c)—预应力为1 050 kN时变形情况; (d)—预应力为1 150 kN时变形情况; (e)—预应力为1 250 kN时变形情况; (f)—预应力为1 350 kN时变形情况.
Fig.13 Finite element simulation results
| 土层 | 重度 | 黏聚力 C/kPa | 弹性模量 E/GPa | 内摩擦角 φin/(°) |
|---|---|---|---|---|
| γkN·m-3 | ||||
| 1-杂填土 | 18.0 | 15.0 | 10.0 | |
| 2-中粗砂 | 19.7 | 3.6 | 23.2 | 34.0 |
| 3-砾砂 | 19.9 | 5.2 | 19.0 | 36.5 |
| 4-砾砂 | 20.2 | 7.3 | 29.4 | 37.4 |
| 5-圆砾 | 20.2 | 41.6 | 39.0 | |
| 6-粗砂 | 20.1 | 29.6 | 37.8 |
表3 某地铁车站场地工程地质分层系统表 (system for a certain subway station site)
Table 3 Engineering geological stratification
| 土层 | 重度 | 黏聚力 C/kPa | 弹性模量 E/GPa | 内摩擦角 φin/(°) |
|---|---|---|---|---|
| γkN·m-3 | ||||
| 1-杂填土 | 18.0 | 15.0 | 10.0 | |
| 2-中粗砂 | 19.7 | 3.6 | 23.2 | 34.0 |
| 3-砾砂 | 19.9 | 5.2 | 19.0 | 36.5 |
| 4-砾砂 | 20.2 | 7.3 | 29.4 | 37.4 |
| 5-圆砾 | 20.2 | 41.6 | 39.0 | |
| 6-粗砂 | 20.1 | 29.6 | 37.8 |
| 监测点编号 | 工况编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 监测点1 | 31.27 | 36.41 | 41.79 | 46.03 |
| 监测点2 | 34.74 | 39.36 | 44.72 | 49.15 |
| 监测点3 | 38.25 | 42.32 | 48.65 | 54.27 |
| 监测点4 | 43.97 | 50.42 | 55.76 | |
| 监测点5 | 46.92 | 51.81 | 56.89 | |
| 监测点6 | 47.88 | 53.74 | 58.01 | |
| 监测点7 | 54.51 | 59.93 | ||
| 监测点8 | 56.97 | 61.62 | ||
| 监测点9 | 57.37 | 62.74 | ||
表4 模拟基坑各监测点变形情况表 (monitoring point in foundation pit mm)
Table 4 Simulated deformation situation of each
| 监测点编号 | 工况编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 监测点1 | 31.27 | 36.41 | 41.79 | 46.03 |
| 监测点2 | 34.74 | 39.36 | 44.72 | 49.15 |
| 监测点3 | 38.25 | 42.32 | 48.65 | 54.27 |
| 监测点4 | 43.97 | 50.42 | 55.76 | |
| 监测点5 | 46.92 | 51.81 | 56.89 | |
| 监测点6 | 47.88 | 53.74 | 58.01 | |
| 监测点7 | 54.51 | 59.93 | ||
| 监测点8 | 56.97 | 61.62 | ||
| 监测点9 | 57.37 | 62.74 | ||
| 监测点编号 | 工况编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 监测点1 | 35.36 | 40.28 | 50.14 | 53.43 |
| 监测点2 | 38.64 | 43.57 | 53.43 | 56.72 |
| 监测点3 | 41.93 | 46.86 | 56.72 | 60.01 |
| 监测点4 | 48.68 | 51.97 | 55.26 | |
| 监测点5 | 51.97 | 56.90 | 58.54 | |
| 监测点6 | 55.26 | 60.19 | 61.83 | |
| 监测点7 | 55.44 | 57.08 | ||
| 监测点8 | 57.08 | 60.37 | ||
| 监测点9 | 62.01 | 63.66 | ||
表5 理论计算各监测点变形情况表 (each monitoring point mm)
Table 5 Theoretical calculation of deformation at
| 监测点编号 | 工况编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 监测点1 | 35.36 | 40.28 | 50.14 | 53.43 |
| 监测点2 | 38.64 | 43.57 | 53.43 | 56.72 |
| 监测点3 | 41.93 | 46.86 | 56.72 | 60.01 |
| 监测点4 | 48.68 | 51.97 | 55.26 | |
| 监测点5 | 51.97 | 56.90 | 58.54 | |
| 监测点6 | 55.26 | 60.19 | 61.83 | |
| 监测点7 | 55.44 | 57.08 | ||
| 监测点8 | 57.08 | 60.37 | ||
| 监测点9 | 62.01 | 63.66 | ||
| [1] | Kim N K, Park J S, Han M Y, al et, Development of innovative prestressed support earth retention system[J], Journal of the Korean Geotechnical Society, 2004, 20(2):107-113. |
| [2] | Park J S, Kim S K, Joo Y S, et al. Finite element analysis of earth retention system with prestressed wales[J], Journal of the Korean Geotechnical Society, 2008, 21(2): 27-36. |
| [3] | Park J S, Joo Y S, Kim N K. New earth retention system with prestressed wales in an urban excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1596-1604 |
| [4] | 郭亮,胡卸文,钱德良,等 .基于位移控制的装配式预应力鱼腹梁深基坑应用研究[J].工程地质学报,2016, 24(5): 1016-1021. |
| Guo Liang, Hu Xie-wen, Qian De-liang, et al. Study on application of prefabricated prestressed fish-bellied beam in deep foundation pit based on displacement control[J]. Journal of Engineering Geology, 2016, 24(5): 1016-1021. | |
| [5] | 庄诗潮,张建霖,张灿辉,等 .装配式预应力鱼腹式钢支撑系统的刚度研究[J].土木工程学报,2021,54(4):18-25. |
| Zhuang Shi-chao, Zhang Jian-lin, Zhang Can-hui, et al. On stiffness of prefabricated prestressed fish-belly steel support system[J]. China Civil Engineering Journal, 2021, 54(4): 18-25. | |
| [6] | Feng T G, Tong T, Cao Y J, et al. Finite element analysis on lateral deformation of foundation pit influenced by pre-stress of fish-bellied beam support[J]. Advanced Materials Research, 2013, 838/839/840/841: 622-628. |
| [7] | Feng T G, Liu L, Tong T, et al. Numerical study on lateral wall displacement of deep excavation supported by IPS earth retention system[J].Underground Space, 2017,2(4):259-271. |
| [8] | 张俊,朱浮声,王助, 等 .沈阳某超深基坑支护系统监测分析[J].东北大学学报(自然科学版),2010,31(3):444-447. |
| Zhang Jun, Zhu Fu-sheng, Wang Zhu, et al. Analysis of lasting monitoring results for design/construction of supporting system of a deep foundation in Shenyang[J]. Journal of Northeastern University (Natural Science), 2010, 31(3): 444-447. | |
| [9] | 赵文,韩健勇,李慎刚, 等 .砂土地层深基坑桩锚支护体系的受力与变形[J].东北大学学报(自然科学版),2015,36(4): 576-580, 595. |
| Zhao Wen, Han Jian-yong, Li Shen-gang, et al. Stresses and deformations in pile-anchor support system of deep foundation pit in sandy layers[J]. Journal of Northeastern University (Natural Science), 2015, 36(4): 576-580, 595. | |
| [10] | Zhang W C, Shi P X, Wang Z S, et al. Explainable boosted combining global and local feature multivariate regression model for deformation prediction during braced deep excavations[J]. Engineering Computations, 2023,40(9/10):2648-2666. |
| [11] | Liu Y K, Zhang Q S, Liu R T, et al. Numerical simulation and field monitoring of deformation characteristics of TRD composite supporting structure for deep foundation pit in quaternary stratum: a case study in Qingdao[J]. Geotechnical and Geological Engineering, 2022, 40(5): 2691-2703. |
| [12] | Wang Q T, Qian H Y. Research on deformation characteristics of foundation pit support structure[J]. IOP Conference Series: Materials Science and Engineering, 2018, 452(2): 022101. |
| [13] | 连秀艳. 预应力鱼腹梁钢支撑与钢筋混凝土支撑组合的设计与应用[J]. 工程技术研究, 2022, 7(24): 149-151. |
| Lian Xiu-yan. Design and application of the combination of prestressed fish belly girder steel support and reinforced concrete support[J]. Engineering and Technological Research, 2022, 7(24): 149-151. | |
| [14] | 李闯,王瑞芳.鱼腹梁钢支撑体系的基坑变形控制研究与分析[J].岩土工程技术, 2025, 39(1):97-104. |
| Li Chuang, Wang Rui-fang. Deformation control and analysis of pre-stressed fish-belly beem steel support system pit [J]. Geotechnical Engineering Technique,2025,39(1): 97-104. |
| [1] | 张江徽;陆钟武;. 中国锌制品的平均使用寿命[J]. 东北大学学报(自然科学版), 2007, 28(9): 1309-1312. |
| [2] | 周乐;王连广;慕光波;李绥;. FRP钢骨混凝土梁正截面抗弯承载力计算[J]. 东北大学学报(自然科学版), 2007, 28(7): 1045-1048. |
| [3] | 陈星秋;李海兰;丁学勇;P.Rogl. 固态二元合金超额热力学函数的计算方法[J]. 东北大学学报(自然科学版), 2001, 22(3): 299-302. |
| [4] | 谢里阳;林文强. 疲劳剩余寿命分布的当量关系及可靠性计算方法[J]. 东北大学学报:自然科学版, 1995, 16(5): 1--. |
| [5] | 王若玲. 我校弧齿锥齿轮研究达到国际先进水平[J]. 东北大学学报:自然科学版, 1994, 15(3): 1--. |
| [6] | 樊治平;吕振辽. 解决二维合理下料问题的一种新方法[J]. 东北大学学报:自然科学版, 1992, 13(1): 79-85. |
| [7] | 王百德;黄万吉. 架空索道缆索的挠度研究[J]. 东北大学学报:自然科学版, 1986, 7(4): 55-62. |
| [8] | 薛嘉庆;王启义. 关于机电式自动跟踪控制系统中组合开关片设计原理与计算方法的研究[J]. 东北大学学报:自然科学版, 1983, 4(1): 49-57. |
| [9] | 王泳嘉. 采矿影响下与时间有关的位移和应力的计算方法[J]. 东北大学学报:自然科学版, 1983, 4(1): 9-21. |
| [10] | 廉锡刚;陈昌明. Holzer理论应用中的两个问题[J]. 东北大学学报:自然科学版, 1982, 3(3): 75-84. |
| [11] | 仇化令. 球式热风炉球床阻损的测定及计算方法的讨论[J]. 东北大学学报:自然科学版, 1978, -(3): 90-97. |
| [12] | 姜兴渭. 电渣重熔工艺参数的确定及其诺模图[J]. 东北大学学报:自然科学版, 1977, -(3): 24-45. |
| [13] | 李造鼎. 竖井表土压力的计算方法[J]. 东北大学学报(自然科学版), 1963, 0(5): 23-38+112. |
| [14] | 彭兆行. 矿山多钢绳摩擦轮提升机主导轮壳计算方法的初探[J]. 东北大学学报(自然科学版), 1963, 0(4): 33-40. |
| [15] | 梁宁元. 东北煤的发热量计算公式的研究[J]. 东北大学学报(自然科学版), 1955, 0(2): 20-24. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||