东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (11): 125-133.DOI: 10.12068/j.issn.1005-3026.2025.20240105

• 资源与土木工程 • 上一篇    下一篇

IWOA-Elman神经网络及其在充填体强度预测中的应用

高浩然, 刘洪磊, 车德福(), 兰天行   

  1. 东北大学 资源与土木工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-05-07 出版日期:2025-11-15 发布日期:2026-02-07
  • 通讯作者: 车德福
  • 作者简介:高浩然(2000—),男,山西临汾人,东北大学硕士研究生
    刘洪磊(1981—),男,山东枣庄人,东北大学教授,博士生导师;
  • 基金资助:
    国家自然科学基金资助项目(52174070)

IWOA-Elman Neural Network and Its Application to Backfill Strength Prediction

Hao-ran GAO, Hong-lei LIU, De-fu CHE(), Tian-xing LAN   

  1. School of Resources & Civil Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2024-05-07 Online:2025-11-15 Published:2026-02-07
  • Contact: De-fu CHE

摘要:

矿山充填体单轴抗压强度是保障采场稳定性的关键指标,针对传统试验测定耗时低效的问题,为实现高效精准预测,提出一种融合混沌映射、自适应权重和Levy飞行的改进鲸鱼优化算法(IWOA).采用IWOA优化Elman神经网络的权值与阈值,构建IWOA-Elman预测模型.基于某矿山充填体配比数据,以水泥、粉煤灰和尾砂质量分数为输入,抗压强度为输出,训练并测试模型.与Elman,PSO-Elman及WOA-Elman模型对比结果表明,IWOA收敛性能更优;IWOA-Elman模型的均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别为0.050 7和3.326 9,精度更高.该模型对充填体强度预测及智能化充填设计具有一定的参考价值.

关键词: 智能化充填, 改进鲸鱼优化算法, Elman神经网络, IWOA-Elman预测模型, 充填体强度预测

Abstract:

Uniaxial compressive strength of mine backfill is critical for stope stability. In response to the problem of low efficiency and long time consumption in traditional testing methods, an improved whale optimization algorithm (IWOA) incorporating chaotic mapping, adaptive weighting, and Levy flight was proposed. IWOA was used to optimize the weights and thresholds of an Elman neural network, and an IWOA-Elman prediction model was constructed. Based on backfill proportioning data from a mine, the model was trained and tested with mass fractions of cement, fly ash, and tailings as inputs and compressive strength as output. Comparative analysis with Elman, PSO-Elman, and WOA-Elman models demonstrates superior convergence of IWOA. The root mean square error (RMSE) and mean absolute percentage error (MAPE) of the IWOA-Elman model are 0.050 7 and 3.326 9, respectively, indicating higher accuracy. The model provides a valuable reference for backfill strength prediction and intelligent backfill design.

Key words: intelligent backfill, improved whale optimization algorithm, Elman neural network, IWOA-Elman prediction model, backfill strength prediction

中图分类号: