| [1] |
刘具, 秦坤.我国煤炭绿色开采技术进展[J]. 矿业安全与环保,2023, 50(6):7-15.
|
|
Liu Ju, Qin Kun. Progress of green coal mining technology in China[J]. Mining Safety & Environmental Protection, 2023, 50(6): 7-15.
|
| [2] |
Williams E. Environmental effects of information and communications technologies[J]. Nature, 2011, 479(7373): 354-358.
|
| [3] |
齐冲冲, 杨星雨, 李桂臣,等.新一代人工智能在矿山充填中的应用综述与展望[J]. 煤炭学报, 2021, 46(2): 688-700.
|
|
Qi Chong-chong, Yang Xing-yu, Li Gui-chen, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling[J].Journal of China Coal Society, 2021, 46(2): 688-700.
|
| [4] |
付自国, 乔登攀, 郭忠林,等.基于RSM-BBD的废石-风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3): 694-703.
|
|
Fu Zi-guo, Qiao Deng-pan, Guo Zhong-lin, et al. Experimental research on mixture proportion and strength of cemented hydraulic fill with waste rock and eolian sand based on RSM-BBD[J]. Journal of China Coal Society, 2018, 43(3): 694-703.
|
| [5] |
吴鹏,王贻明,吴爱祥,等.基于全面试验的钒铁矿开采充填材料配比优化研究[J]. 金属矿山, 2016(10): 5-10.
|
|
Wu Peng, Wang Yi-ming, Wu Ai-xiang, et al. Optimization of mining filling material proportioning for a vanadium iron ore based on the thorough tests [J]. Metal Mine, 2016, (10): 5-10.
|
| [6] |
王新民,徐东升.胶结充填料优化配比研究及强度预测[J].矿业快报,2006, 22(12):20-23.
|
|
Wang Xin-min, Xu Dong-sheng. Research on optimization proportioning of cemented filling material and strength forecasting[J]. Express Information of Mining Industry, 2006, 22(12): 20-23.
|
| [7] |
张钦礼,李谢平,杨伟.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),2013, 44(7):2867-2874.
|
|
Zhang Qin-li, Li Xie-ping, Yang Wei. Optimization of filling slurry ratio in a mine based on back-propagation neural network[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2867-2874.
|
| [8] |
吴炜,吉坤,张朋,等.基于ANN-PSO模型的充填体强度预测及其工程应用[J].矿业研究与开发,2020, 40(2):53-57.
|
|
Wu Wei, Ji Kun, Zhang Peng, et al. Strength prediction of filling body based on ANN-PSO model and its engineering application[J]. Mining Research and Development, 2020, 40(2): 53-57.
|
| [9] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
|
| [10] |
Li X Y, Zhang L, Wang Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518.
|
| [11] |
Hao J, Zhu C S, Guo X T. A new CIGWO-Elman hybrid model for power load forecasting[J]. Journal of Electrical Engineering & Technology, 2022, 17(2): 1319-1333.
|
| [12] |
Aljarah I, Faris H, Mirjalili S. Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22(1): 1-15.
|
| [13] |
亓祥波,陈阳,郑铭.面向柔性作业车间调度的多策略鲸鱼优化算法[J]. 计算机系统应用,2023, 32(9):154-161.
|
|
Qi Xiang-bo, Chen Yang, Zheng Ming. Multi-strategy whale optimization algorithm for flexible job shop scheduling[J]. Computer Systems and Applications, 2023, 32(9): 154-161.
|
| [14] |
郝晓弘, 宋吉祥, 周强,等.混合策略改进的鲸鱼优化算法[J].计算机应用研究, 2020, 37(12): 3622-3626, 3655.
|
|
Hao Xiao-hong, Song Ji-xiang, Zhou Qiang, et al. Improved whale optimization algorithm based on hybrid strategy[J]. Application Research of Computers, 2020, 37(12): 3622-3626, 3655.
|
| [15] |
Zhang Y F, Zhao J P, Wang L M, et al.An improved OIF Elman neural network based on CSO algorithm and its applications[J]. Computer Communications, 2021, 171: 148-156.
|
| [16] |
Gupta T, Kumar R. A novel feed-through Elman neural network for predicting the compressive and flexural strengths of eco-friendly jarosite mixed concrete: design, simulation and a comparative study [J]. Soft Computing, 2024, 28(1): 399-414.
|
| [17] |
Xiong S, Liu Z X, Min C D, et al. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm[J]. Materials, 2023, 16(1): 308.
|
| [18] |
Wan S C, Yang H J, Lin J W, et al. Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM[J]. Energy,2024, 310:133185.
|