东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (7): 37-48.DOI: 10.12068/j.issn.1005-3026.2025.20240164

• 工业智能理论与方法 • 上一篇    下一篇

基于ConvGRU融合注意力机制的工业混合气体智能识别方法

孟凡利(), 李书畅, 王浩, 苑振宇   

  1. 东北大学 信息科学与工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-09-06 出版日期:2025-07-15 发布日期:2025-09-24
  • 通讯作者: 孟凡利
  • 作者简介:苑振宇(1985—),男,内蒙古赤峰人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(62071112);国家自然科学基金资助项目(62033002);中央高校基本科研业务费专项资金资助项目(N2201008);中央高校基本科研业务费专项资金资助项目(N2304024);河北省自然科学基金资助项目(F2020501040)

Intelligent Identification Method of Industrial Mixed Gases Based on ConvGRU Fusion Attention Mechanism

Fan-li MENG(), Shu-chang LI, Hao WANG, Zhen-yu YUAN   

  1. School of Information Science & Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2024-09-06 Online:2025-07-15 Published:2025-09-24
  • Contact: Fan-li MENG

摘要:

针对传统半导体气敏传感器在气体识别方面存在的数据依赖度高和混合气体识别精度不足的问题,本研究提出了1种融合门控循环单元(GRU)、卷积与注意力机制的ConvGRUAttention网络模型.采用经验小波变换(empirical wavelet transform,EWT)对原始信号进行时频域转换与多尺度分解,抑制噪声并降低数据依赖,提高了模型的鲁棒性.本模型通过卷积层提取局部动态特征,利用GRU捕捉信号的长期依赖,并引入注意力机制动态优化多尺度信号的特征权重,增强模型的特征提取和泛化能力.通过实验验证,定性识别准确率达到了100%,定量识别的均方根误差为3.3×10-6.与传统方法相比,混合气体检测精度显著提高.

关键词: 半导体气敏传感器, 经验小波变换, 卷积门控循环注意力模型, 定性识别, 定量检测

Abstract:

To address the issue of high data dependency and insufficient accuracy in mixed gas identification for traditional semiconductor gas sensors, a ConvGRUAttention network model that integrates gated recurrent units (GRU), convolutional layers, and attention mechanism is proposed. Empirical wavelet transform (EWT) is employed to convert raw signals into the time-frequency domain and perform multi-scale decomposition, which suppresses noise, reduces data dependency, and enhances the model’s robustness. The model extracts local dynamic features through convolutional layers, captures long-term dependencies using GRU, and optimizes feature weights across multi-scale signals via the attention mechanism, thereby improving feature extraction and generalization capabilities. Experimental results demonstrate 100% accuracy in qualitative identification and a root mean square error (RMSE) of 3.3×10⁻⁶ in quantitative detection. Compared with the traditional methods, the detection accuracy for mixed gases is significantly improved.

Key words: semiconductor gas sensor, empirical wavelet transform (EWT), ConvGRUAttention model, qualitative identification, quantitative detection

中图分类号: