| [1] |
Elmahaishi M F, Azis R S, Ismail I, et al. A review on electromagnetic microwave absorption properties: their materials and performance[J]. Journal of Materials Research and Technology, 2022, 20: 2188-2220.
|
| [2] |
Zhao Y Z, Wang W, Wang J N, et al. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance[J]. Carbon, 2021, 173: 1059-1072.
|
| [3] |
Kim S H, Lee S Y, Zhang Y L, et al. Carbon-based radar absorbing materials toward stealth technologies[J]. Advanced Science, 2023, 10(32): 2303104.
|
| [4] |
张亚坤,曾凡,戴全辉,等.雷达隐身技术智能化发展现状与趋势[J].战术导弹技术, 2019(1): 56-63.
|
|
Zhang Ya-kun, Zeng Fan, Dai Quan-hui, et al. Development status and trend of intelligent development of radar stealth technology[J]. Tactical Missile Technology, 2019(1): 56-63.
|
| [5] |
钟国媛,董季玲,石小雪,等. Fe-MOFs衍生碳基吸波材料研究进展[J].电子元件与材料, 2024, 43(2): 127-136.
|
|
Zhong Guo-yuan, Dong Ji-ling, Shi Xiao-xue, et al. Research progress of carbon-based wave-absorbing materials derived from Fe-MOFs[J]. Electronic Components and Materials, 2024, 43(2): 127-136.
|
| [6] |
Li Y X, Liao Y J, Ji L Z, et al. Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption[J]. Small, 2022, 18(4): 2107265.
|
| [7] |
Shi X F, You W B, Zhao Y H, et al. Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption[J]. Nanoscale, 2019, 11(37): 17270-17276.
|
| [8] |
刘祥萱,王煊军,崔虎. 雷达波吸收材料设计与特性分析[M].北京:国防工业出版社, 2018.
|
|
Liu Xiang-xuan, Wang Xuan-jun, Cui Hu. Design and property analysis of radar absorbing materials [M]. Beijing: National Defense Industry Press, 2018.
|
| [9] |
Zhang N, Huang Y, Wang M Y. Synthesis of graphene/thorns-like polyaniline/α-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber[J]. Journal of Colloid and Interface Science, 2018, 530: 212-222.
|
| [10] |
Tang J M, Liang N, Wang L, et al. Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption[J]. Carbon, 2019, 152: 575-586.
|
| [11] |
Zhang X F, Guan P F, Dong X L. Multidielectric polarizations in the core/shell Co/graphite nanoparticles[J]. Applied Physics Letters, 2010, 96(22): 223111.
|
| [12] |
Feng Y, Li D, Bai Y, et al. The effect of core-shell structure on microwave absorption properties of graphite-coated magnetic nanocapsules[J]. Journal of Electronic Materials, 2019, 48(3): 1429-1435.
|
| [13] |
Li X A, Du D X, Wang C S, et al. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption[J]. Journal of Materials Chemistry C, 2018, 6(3): 558-567.
|
| [14] |
Zhao H B, Cheng J B, Zhu J Y, et al. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness[J]. Journal of Materials Chemistry C, 2019, 7(2): 441-448.
|
| [15] |
Li X Y, Lu K. Playing with defects in metals[J]. Nature Materials, 2017, 16(7): 700-701.
|
| [16] |
Dresselhaus M S, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758.
|
| [17] |
Xu X, Guo Y, Bloom B P, et al. Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation[J]. ACS Nano, 2020, 14(12): 17704-17712.
|
| [18] |
Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246.
|
| [19] |
Cançado L G, Jorio A, Martins F E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196.
|
| [20] |
Cançado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters, 2006, 88(16): 163106.
|
| [21] |
Zafar Z, Ni Z H, Wu X, et al. Evolution of Raman spectra in nitrogen doped graphene[J]. Carbon, 2013, 61: 57-62.
|
| [22] |
Eigler S, Dotzer C, Hirsch A. Visualization of defect densities in reduced graphene oxide[J]. Carbon, 2012, 50(10): 3666-3673.
|
| [23] |
宋玉娟. 多壁碳纳米管的缺陷调控及微波吸收性能研究[D].沈阳:东北大学, 2021.
|
|
Song Yu-juan. Study on defect control and microwave absorption properties of multi-walled carbon nanotubes[D]. Shenyang: Northeastern University, 2021.
|
| [24] |
Brosseau C, NDong W, Mdarhri A. Influence of uniaxial tension on the microwave absorption properties of filled polymers[J]. Journal of Applied Physics, 2008, 104(7): 074907.
|
| [25] |
Qin F X, Brosseau C, Peng H X, et al. In situ microwave characterization of microwire composites with external magnetic field[J]. Applied Physics Letters, 2012, 100(19): 192903.
|
| [26] |
Li Y X, Liu R G, Pang X Y, et al. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies[J]. Carbon, 2018, 126: 372-381.
|
| [27] |
Li Y X, Wang J Y, Liu R G, et al. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite[J]. Journal of Alloys and Compounds, 2017, 724: 1023-1029.
|
| [28] |
Wang J Y, Wang Z H, Liu R G, et al. Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption[J]. Materials Letters, 2017, 209: 276-279.
|