| [1] |
Von Seebeck T J, Von Octtingen A J. Magnetische polarisation der metalle und erze durch temperatur-differenz [M]. Leipzig: Engelmann W, 1895.
|
| [2] |
Peltier J C A. Nouvelles expériences sur la caloricité des courans électriques [J]. Annales de Chimie et de Physique, 1834,56(4):371-386.
|
| [3] |
Von Ettingshausen A, Nernst W. Ueber das auftreten electromotorischer kräfte in metallplatten, welche von einem wärmestrome durchflossen werden und sich im magnetischen felde befinden[J]. Annalen der Physik, 1886, 265(10): 343-347.
|
| [4] |
Pei Y Z, Shi X Y, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
|
| [5] |
Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 [J]. Science, 2021, 371(6530): 722-727.
|
| [6] |
Liu D R, Wang D Y, Hong T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841-846.
|
| [7] |
Wang H H, Jiang L F, Zhou Z Z, et al. Magnetic frustration driven high thermoelectric performance in the kagome antiferromagnet YMn6Sn6 [J]. Physical Review B, 2023, 108(15): 155135.
|
| [8] |
Zheng S K, Xiao S J, Peng K L, et al. Symmetry-guaranteed high carrier mobility in quasi-2D thermoelectric semiconductors[J]. Advanced Materials, 2023, 35(10): 2210380.
|
| [9] |
Wang H H, Zhou Z Z, Ying J J, et al. Large magneto-transverse and longitudinal thermoelectric effects in the magnetic Weyl semimetal TbPtBi[J]. Advanced Materials, 2023, 35(2): 2206941.
|
| [10] |
Serrano-Sanchez F, Yao M Y, He B, et al. Electronic structure and low-temperature thermoelectric transport of TiCoSb single crystals[J]. Nanoscale, 2022, 14(28): 10067-10074.
|
| [11] |
Pan Y, He B, Helm T, et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2 [J]. Nature Communications, 2022, 13(1): 3909.
|
| [12] |
祝鑫强, 王剑, 朱璨, 等. Co3Sn2S2单晶的磁性和电-热输运性能[J]. 物理学报, 2023, 72(17): 177102.
|
|
Zhu Xin-qiang, Wang Jian, Zhu Can, et al. Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal[J]. Acta Physica Sinica, 2023, 72(17): 177102.
|
| [13] |
Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
|
| [14] |
Zhao W Y, Liu Z Y, Sun Z G, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature, 2017, 549(7671): 247-251.
|
| [15] |
Lyu M, Liu J Y, Zhang S, et al. Large anomalous Hall and Nernst effects dominated by an intrinsic mechanism in the noncollinear ferromagnet PrMn2Ge2 [J]. Physical Review B, 2025, 111(1): 014424.
|
| [16] |
He B, Yu T Y, Pan Y, et al. Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2 [J]. Physical Review B, 2025, 111(4): 045157.
|
| [17] |
He B, Yao M Y, Pan Y, et al. Enhanced Weyl semimetal signature in Co3Sn2S2 Kagome ferromagnet by chlorine doping[J]. Communications Materials, 2024, 5: 275.
|
| [18] |
Shao D X, Deng J Z, Sheng H H, et al. Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer[J]. Research, 2023, 6: 0042.
|
| [19] |
Pan Y, He B, Wang H H, et al. Topological materials for high performance transverse thermoelectrics[J]. Next Energy, 2024, 2: 100103.
|
| [20] |
李荣汉. 拓扑半金属材料的第一性原理计算设计[D]. 合肥:中国科学技术大学, 2019.
|
|
Li Rong-han. The calculational design of topological semimetal materials[D]. Hefei: University of Science and Technology of China, 2019.
|
| [21] |
Zhou W N, Yamamoto K, Miura A, et al. Seebeck-driven transverse thermoelectric generation[J]. Nature Materials, 2021, 20(4): 463-467.
|
| [22] |
Nolas G S, Sharp J, Goldsmid H J. Thermoelectrics: basic principles and new materials developments[M]. New York: Springer, 2001.
|
| [23] |
Watzman S J, Duine R A, Tserkovnyak Y, et al. Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni[J]. Physical Review B, 2016, 94(14): 144407.
|
| [24] |
Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
|
| [25] |
Železný J, Yahagi Y, Gomez-Olivella C, et al. High-throughput study of the anomalous Hall effect[J]. NPJ Computational Materials, 2023, 9(1): 151.
|
| [26] |
Noky J, Gayles J, Felser C, et al. Strong anomalous Nernst effect in collinear magnetic Weyl semimetals without net magnetic moments[J]. Physical Review B, 2018, 97(22): 220405.
|
| [27] |
Koepernik K, Eschrig H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme[J]. Physical Review B, 1999, 59(3): 1743-1757.
|
| [28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
| [29] |
Rahman G, Jan H U. Elastic and magnetic properties of cubic Fe4C from first-principles[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(2): 405-411.
|
| [30] |
Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405-408.
|
| [31] |
Xiao D, Chang M C, Niu Q. Berry phase effects on electronic properties[J]. Reviews of Modern Physics, 2010, 82(3): 1959-2007.
|