
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (11): 143-153.DOI: 10.12068/j.issn.1005-3026.2025.20249028
收稿日期:2024-05-21
出版日期:2025-11-15
发布日期:2026-02-07
通讯作者:
范颖芳
基金资助:
Ying-fang FAN(
), Yu-xuan SU, Qiu-chao LI, Hao CHEN
Received:2024-05-21
Online:2025-11-15
Published:2026-02-07
Contact:
Ying-fang FAN
摘要:
为了研究粉煤灰水泥浆内部钢筋钝化过程,考虑5组粉煤灰掺量(质量分数为0,10%,20%,30%和40%),浇筑水泥浆钢筋圆柱形试件,采用开路电位、电化学阻抗谱等电化学方法,监测水泥水化过程中内部钢筋钝化膜的形成过程,获得水泥水化过程中不同粉煤灰掺量水泥浆钢筋试件的阻抗谱,基于等效电路模型R(Q(R(QR)))得到试件钝化膜电阻、电荷转移电阻和表观界面电容等电化学参数.结果表明,粉煤灰水泥浆内部钢筋钝化膜在7 d内形成;R(Q(R(QR)))等效电路模型可有效拟合粉煤灰水泥浆钢筋试件的电化学阻抗谱曲线,卡方检验结果小于10-4数量级;粉煤灰延缓水泥浆内部钢筋钝化;掺20%粉煤灰水泥浆内部钢筋钝化膜较稳定,对钢筋保护能力较好.
中图分类号:
范颖芳, 苏钰璇, 李秋超, 陈昊. 粉煤灰水泥浆内部钢筋钝化行为的电化学试验研究[J]. 东北大学学报(自然科学版), 2025, 46(11): 143-153.
Ying-fang FAN, Yu-xuan SU, Qiu-chao LI, Hao CHEN. Electrochemical Experimental Study on Passivation Behavior of Steel Bars Embedded in Fly Ash Cement Paste[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 143-153.
| 材料 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | Na2O | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| 水泥 | 59.30 | 21.91 | 6.27 | 1.64 | 3.78 | 2.41 | — | — | 4.69 |
| FA | 4.78 | 49.89 | 34.81 | 1.28 | 2.17 | 1.10 | 2.97 | 1.25 | 1.75 |
表1 水泥和FA化学组成(质量分数) (%)
Table 1 Chemical composition of cement and FA(mass fraction)
| 材料 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | Na2O | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| 水泥 | 59.30 | 21.91 | 6.27 | 1.64 | 3.78 | 2.41 | — | — | 4.69 |
| FA | 4.78 | 49.89 | 34.81 | 1.28 | 2.17 | 1.10 | 2.97 | 1.25 | 1.75 |
试件 编号 | FA | OPC | FAC 10 | FAC 20 | FAC 30 | FAC 40 |
|---|---|---|---|---|---|---|
| pH值 | 10.13 | 13.11 | 13.06 | 13.04 | 13.01 | 12.99 |
表2 FA水泥浆pH
Table 2 pH of FA cement paste
试件 编号 | FA | OPC | FAC 10 | FAC 20 | FAC 30 | FAC 40 |
|---|---|---|---|---|---|---|
| pH值 | 10.13 | 13.11 | 13.06 | 13.04 | 13.01 | 12.99 |
| 龄期/d | OPC | FAC10 | FAC20 | FAC30 | FAC40 |
|---|---|---|---|---|---|
| 1 | 3.59×10-4 | 9.80×10-5 | 6.80×10-4 | 1.00×10-4 | 1.74×10-4 |
| 7 | 2.34×10-4 | 7.41×10-4 | 6.72×10-4 | 2.18×10-4 | 5.78×10-4 |
表3 等效电路模拟卡方检验结果
Table 3 Chi-square results by equivalent circuit simulation
| 龄期/d | OPC | FAC10 | FAC20 | FAC30 | FAC40 |
|---|---|---|---|---|---|
| 1 | 3.59×10-4 | 9.80×10-5 | 6.80×10-4 | 1.00×10-4 | 1.74×10-4 |
| 7 | 2.34×10-4 | 7.41×10-4 | 6.72×10-4 | 2.18×10-4 | 5.78×10-4 |
| 试件编号 | 龄期/d | Y0·10-2/(kΩ-1·cm-2·s | n |
|---|---|---|---|
| OPC | 1 | 4.02 | 0.91 |
| 7 | 3.22 | 0.94 | |
| FAC10 | 1 | 4.09 | 0.91 |
| 7 | 3.59 | 0.93 | |
| FAC20 | 1 | 4.10 | 0.90 |
| 7 | 3.29 | 0.93 | |
| FAC30 | 1 | 4.66 | 0.93 |
| 7 | 3.49 | 0.94 | |
| FAC40 | 1 | 4.43 | 0.90 |
| 7 | 3.94 | 0.95 |
表4 等效电路模拟参数值 (simulation)
Table 4 Parameter values of equivalent circuit
| 试件编号 | 龄期/d | Y0·10-2/(kΩ-1·cm-2·s | n |
|---|---|---|---|
| OPC | 1 | 4.02 | 0.91 |
| 7 | 3.22 | 0.94 | |
| FAC10 | 1 | 4.09 | 0.91 |
| 7 | 3.59 | 0.93 | |
| FAC20 | 1 | 4.10 | 0.90 |
| 7 | 3.29 | 0.93 | |
| FAC30 | 1 | 4.66 | 0.93 |
| 7 | 3.49 | 0.94 | |
| FAC40 | 1 | 4.43 | 0.90 |
| 7 | 3.94 | 0.95 |
| [1] | Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58: 159-167. |
| [2] | Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution[J]. Cement and Concrete Research, 2007, 37(7): 1127-1133. |
| [3] | Rangel C M, Silva T M, da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochimica Acta, 2005, 50(25/26): 5076-5082. |
| [4] | Hakiki N E, Da Cunha Belo M. Electronic structure of passive films formed on molybdenum-containing ferritic stainless steels[J]. Journal of the Electrochemical Society, 1996, 143(10): 3088-3094. |
| [5] | 李彩亭,曾光明,林玉鹏.粉煤灰活化试验研究[J].湖南大学学报(自然科学版), 2002, 29(1): 93-97. |
| Li Cai-ting, Zeng Guang-ming, Lin Yu-peng. Test study on activation of fly ash[J]. Journal of Hunan University (Natural Science), 2002, 29(1): 93-97. | |
| [6] | Behera S K, Mishra D P, Singh P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. |
| [7] | Mundra S, Criado M, Bernal S A, et al. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes[J]. Cement and Concrete Research, 2017, 100: 385-397. |
| [8] | Miranda J M, Fernández-Jiménez A, González J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research, 2005, 35(6): 1210-1217. |
| [9] | Koga G Y, Albert B, Roche V, et al. A comparative study of mild steel passivation embedded in Belite-Ye’elimite-ferrite and Porland cement mortars[J]. Electrochimica Acta, 2018, 261: 66-77. |
| [10] | Harilal M, Kamde D K, Uthaman S, et al. The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor[J]. Construction and Building Materials, 2021, 274: 122097. |
| [11] | Zheng H B, Dai J G, Poon C S, et al. Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J]. Cement and Concrete Research, 2018, 108: 46-58. |
| [12] | Wei J G, Chen R, Huang W, et al. Effect of endogenous chloride ion content and mineral admixtures on the passivation behavior of reinforcement embedded in sea-sand ultra-high performance concrete matrix[J]. Construction and Building Materials, 2022, 321: 126402. |
| [13] | Yao N, Zhou X C, Liu Y Q, et al. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions[J]. Cement and Concrete Composites, 2022, 132: 104637. |
| [14] | Geng Z, Yao N, Zhou X C, et al. Understanding the intrinsic effect of fly ash on passivity and chloride-induced corrosion of carbon steel and stainless steel in cement extract solutions[J]. Cement and Concrete Composites, 2023, 143: 105236. |
| [15] | 史先飞,陈晓华,满成.HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J].中国腐蚀与防护学报,2024, 44(5): 1213-1222. |
| Shi Xian-fei, Chen Xiao-hua, Man Cheng. Natural passivation behavior and corrosion resistance of HRB400 steel in simulated concrete pore solution[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(5): 1213-1222. | |
| [16] | Society for Testing and Materials. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete: [S]. United States of America: ASTM International, 2009. |
| [17] | Jin Z Q, Zhao X, Du Y J, et al. Comprehensive properties of passive film formed in simulated pore solution of alkali-activated concrete[J].Construction and Building Materials, 2022, 319: 126142. |
| [18] | Gray J J, Orme C A. Electrochemical impedance spectroscopy study of the passive films of alloy 22 in low pH nitrate and chloride environments[J]. Electrochimica Acta, 2007, 52(7): 2370-2375. |
| [19] | Rizwan Hussain R, Alhozaimy A M, Al-Negheimish A. Role of scoria natural pozzolan in the passive film development for steel rebars in chloride-contaminated concrete environment[J]. Construction and Building Materials, 2022, 357: 129335. |
| [20] | 王潇舷,刘加平,穆松,等.混凝土环境中β-甘油磷酸钠影响钢筋阻锈行为研究[J].华南理工大学学报(自然科学版),2024, 52(3):28-40. |
| Wang Xiao-xian, Liu Jia-ping, Mu Song, et al. Study on sodium β-glycerophosphate in concrete affects the inhibited behavior of steel bar[J]. Journal of South China University of Technology (Natural Science Edition),2024, 52(3): 28-40. | |
| [21] | Wang X H, Chen B, Gao Y, et al. Influence of external loading and loading type on corrosion behavior of RC beams with epoxy-coated reinforcements[J]. Construction and Building Materials, 2015, 93: 746-765. |
| [22] | Ababneh A, Sheban M. Impact of mechanical loading on the corrosion of steel reinforcement in concrete structures[J]. Materials and Structures, 2011, 44(6): 1123‒1137. |
| [23] | Monticelli C, Natali M E, Balbo A, et al. Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization[J]. Cement and Concrete Research, 2016, 80: 60-68. |
| [24] | Tan Y S, Yu H F, Bi W L, et al. Hydration behavior of magnesium oxysulfate cement with fly ash via electrochemical impedance spectroscopy[J].Journal of Materials in Civil Engineering, 2019,31(10): 04019237. |
| [25] | Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores[J]. Electrochimica Acta, 2007, 52(27): 7634-7641. |
| [26] | Liu G J, Zhang Y S, Wu M, et al. Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits[J]. Construction and Building Materials, 2017,157: 357-362. |
| [27] | Lin K Q, Zheng T. Long-term corrosion behavior of low carbon steel bars embedded in building concrete: effect of silica fume and dolomite powder as partial replacements of Portland cement[J]. International Journal of Electrochemical Science, 2020, 15(12): 12329-12338. |
| [28] | 刘国建, 朱航, 张云升, 等. 混凝土孔溶液中不同侵蚀离子对钢筋的腐蚀行为[J]. 硅酸盐学报, 2022, 50(2): 413-419. |
| Liu Guo-jian, Zhu Hang, Zhang Yun-sheng, et al. Corrosion behavior of steel subjected to different corrosive ions in simulated concrete pore solution[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 413-419. | |
| [29] | Rosalbino F, Scavino G, Ubertalli G. Electrochemical corrosion behavior of LDX 2101® duplex stainless steel in a fluoride-containing environment[J].Materials and Corrosion, 2020,71(12): 2021-2028. |
| [30] | 乔宏霞,刘志超,路承功,等.碳化环境下多元胶凝体系钢筋混凝土电化学特性[J].湖南大学学报(自然科学版). 2023, 50(3): 110-120. |
| Qiao Hong-xia, Liu Zhi-chao, Lu Cheng-gong, et al. Electrochemical characteristics of reinforced concrete with multiple cementitious system in carbonization environment[J]. Journal of Hunan University (Natural Sciences), 2023, 50(3): 110-120. | |
| [31] | Huang T J, Yuan Q, Zuo S H, et al. Evaluation of microstructural changes in fresh cement paste using AC impedance spectroscopy vs. oscillation rheology and 1H NMR relaxometry[J].Cement and Concrete Research, 2021,149: 106556. |
| [32] | 席翔,储洪强,冉千平,等. 通用硅酸盐水泥基材料低频介电性能的研究进展[J].硅酸盐学报, 2023, 51(8): 2074-2089. |
| Xi Xiang, Chu Hong-qiang, Ran Qian-ping, et al. Low-frequency dielectric behavior of common Portland cement-based materials: a review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2074-2089. | |
| [33] | Wang D Q, Liu Z C, Zhi X, et al. Passivation of mild steel embedded in low-heat Portland cement: a comparative study with ordinary Portland cement[J]. Cement and Concrete Composites, 2024, 146: 105389. |
| [34] | 崔丽君,乔宏霞,曹锋,等.青稞秸秆灰改性氯氧镁水泥砂浆防护钢筋混凝土的损伤特性[J].硅酸盐通报,2024, 43(9): 3282-3293.. |
| Cui Li-jun, Qiao Hong-xia, Cao Feng, et al. Damage characteristics of highland barley straw ash modified magnesium oxychloride cement mortar protected reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3282-3293. | |
| [35] | Pech-Canul M A, Castro P. Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research, 2002, 32(3): 491-498. |
| [1] | 王营, 顾晓薇, 胥孝川, 王青. 石灰-硫酸钠复合激发矿渣-粉煤灰胶凝体系水化特征[J]. 东北大学学报(自然科学版), 2025, 46(4): 87-96. |
| [2] | 刘芳, 李卓, 苏卫星, 刘阳. 阶次自适应AR等效电路模型的锂电池SOC滑模观测[J]. 东北大学学报(自然科学版), 2021, 42(10): 1376-1385. |
| [3] | 公彦兵, 孙俊民, 张廷安, 吕国志. 高铝粉煤灰拜耳法溶出渣碱回收[J]. 东北大学学报:自然科学版, 2019, 40(3): 345-350. |
| [4] | 林鑫, 刘芳, 胡筱敏. 酸碱改性粉煤灰对SBR反应器处理氨氮废水的影响[J]. 东北大学学报:自然科学版, 2018, 39(12): 1783-1787. |
| [5] | 张旭明;王建军;刘春明;殷跃军;. 硅烷水解时间对Q235钢表面VTES膜层耐蚀性的影响[J]. 东北大学学报(自然科学版), 2012, 33(9): 1278-1281. |
| [6] | 马北越;厉英;翟玉春;. 用粉煤灰合成不同组成的Sialon环境材料[J]. 东北大学学报(自然科学版), 2011, 32(9): 1282-1285. |
| [7] | 马北越;厉英;徐礼兵;翟玉春;. 原位合成(O′+β)-Sialon/莫来石复合材料[J]. 东北大学学报(自然科学版), 2011, 32(1): 102-105. |
| [8] | 季凯;祖国胤;姚广春;. 新型可焊6005A铝合金的腐蚀行为[J]. 东北大学学报(自然科学版), 2010, 31(7): 990-994. |
| [9] | 马北越;厉英;翟玉春;. 利用粉煤灰反应烧结合成ZrO_2-莫来石复合材料[J]. 东北大学学报(自然科学版), 2010, 31(6): 852-855. |
| [10] | 李艺;梁磊;赵文;王国峰;. 用于贮存核废料混凝土断裂能的影响因素分析[J]. 东北大学学报(自然科学版), 2009, 30(3): 441-444. |
| [11] | 程云虹;赵文;董明;. 基于BP网络的粉煤灰混凝土钢筋握裹力计算[J]. 东北大学学报(自然科学版), 2007, 28(2): 274-277. |
| [12] | 于晓彩;王恩德;徐微;辛哲. 改性粉煤灰处理阴离子表面活性剂废水[J]. 东北大学学报(自然科学版), 2005, 26(4): 299-302. |
| [13] | 罗洪杰;姚广春;刘宜汉;张晓明. 粉煤灰增黏制备泡沫铝材料的研究[J]. 东北大学学报(自然科学版), 2005, 26(3): 274-277. |
| [14] | 于晓彩;王恩德;王武名. 改性粉煤灰处理造纸废水的研究[J]. 东北大学学报(自然科学版), 2003, 24(8): 814-816. |
| [15] | 程云虹;王元;刘斌. 一种超细粉料的减水性[J]. 东北大学学报:自然科学版, 2002, 23(5): 484-486. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||